
Gambit-C, version 4.0 beta 8
A portable implementation of Scheme

Edition 4.0 beta 8, October 2004

Marc Feeley

Copyright c© 1994-2004 Marc Feeley.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the copyright holder.

Chapter 1: The Gambit-C system 1

1 The Gambit-C system

The Gambit programming system is a full implementation of the Scheme language which
conforms to the R4RS and IEEE Scheme standards. It consists of two main programs: gsi ,
the Gambit Scheme interpreter, and gsc , the Gambit Scheme compiler.

Gambit-C is a version of the Gambit programming system in which the compiler gen-
erates portable C code, making the whole Gambit-C system and the programs compiled
with it easily portable to many computer architectures for which a C compiler is available.
With appropriate declarations in the source code the executable programs generated by the
compiler run roughly as fast as equivalent C programs.

For the most up to date information on Gambit and add-on packages please check the
Gambit web page at ‘http://www.iro.umontreal.ca/˜gambit ’. Bug reports and
inquiries should be sent to ‘gambit@iro.umontreal.ca ’.

1.1 Accessing the system files

Unless the default is overridden when the Gambit-C system was built (with the
command ‘configure --prefix=/my/own/directory ’), all files are installed in
‘/usr/local/Gambit-C ’ under UNIX and Mac OS X and ‘C:\Gambit-C ’ under
Microsoft Windows. This is the Gambit installation directory.

The system’s executables including the interpreter ‘gsi ’ and compiler ‘gsc ’ are stored
in the ‘bin ’ subdirectory of the Gambit installation directory. It is convenient to put the
‘bin ’ directory in the shell’s ‘PATH’ environment variable so that these programs can be
invoked simply by entering their name.

The runtime library is located in the ‘lib ’ subdirectory. When the system’s runtime
library is built as a shared-library (with the command ‘configure --enable-shared ’)
all programs built with Gambit-C, including the interpreter and compiler, need to find
this library when they are executed and consequently this directory must be in the path
searched by the system for shared-libraries. This path is normally specified through an
environment variable which is ‘LD_LIBRARY_PATH’ on most versions of UNIX, ‘LIBPATH’
on AIX, ‘SHLIB_PATH’ on HPUX, ‘DYLD_LIBRARY_PATH’ on Mac OS X, and ‘PATH’
on Microsoft Windows. If the shell is of the ‘sh ’ family, the setting of the path can be
made for a single execution by prefixing the program name with the environment variable
assignment, as in:

% LD_LIBRARY_PATH=/usr/local/Gambit-C/lib gsi

A similar problem exists with the Gambit header file ‘gambit.h ’, located in the
‘include ’ subdirectory. This header file is needed for compiling Scheme programs with
the Gambit-C compiler. When the C compiler is being called explicitly it may be necessary
to use a ‘-I< dir >’ command line option to indicate where to find header files and a
‘-L< dir >’ command line option to indicate where to find libraries. Access to both of
these files can be simplified by creating a link to them in the appropriate system directories
(special privileges may however be required):

% ln -s /usr/local/Gambit-C/lib/libgambc.a /usr/lib # name may vary
% ln -s /usr/local/Gambit-C/include/gambit.h /usr/include

This is not done by the installation process. Alternatively these files can also be copied or
linked in the directory where the C compiler is invoked (this requires no special privileges).

Chapter 2: The Gambit Scheme interpreter 2

2 The Gambit Scheme interpreter

Synopsis:
gsi [-: runtimeoption ,...] [-i] [-f] [[-] [-e expressions] [file]]...

The interpreter is executed in interactive mode when no file or ‘- ’ or ‘-e ’ option is given
on the command line. When at least one file or ‘- ’ or ‘-e ’ option is present the interpreter
is executed in batch mode. The ‘-i ’ option is ignored by the interpreter. The initialization
file will be examined unless the ‘-f ’ option is present (see Section 2.3 [GSI customization],
page 3). Runtime options are explained in Chapter 4 [Runtime options], page 17.

2.1 Interactive mode

In interactive mode a read-eval-print loop (REPL) is started for the user to interact with
the interpreter. At each iteration of this loop the interpreter displays a prompt, reads a
command and executes it. The commands can be Scheme expressions to evaluate (the
typical case) or special commands related to debugging, for example ‘,q ’ to terminate the
current thread (for a complete list of commands see Chapter 5 [Debugging], page 19). Most
commands produce some output, such as the value or error message resulting from an
evaluation.

The input and output of the interaction is done on the interaction channel. The in-
teraction channel can be specified through the runtime options but if none is specified
the system uses a reasonable default that depends on the system’s configuration. When
the system’s runtime library was built with support for the IDE (with the command
‘configure --enable-ide ’) the interaction channel corresponds to the console window
of the primordial thread (for details see Section 5.6 [IDE], page 29), otherwise the inter-
action channel is the user’s console, also known as the controlling terminal in the UNIX
world. When the REPL starts, the ports associated with ‘(current-input-port) ’,
‘(current-output-port) ’ and ‘(current-error-port) ’ all refer to the interaction
channel.

Expressions are evaluated in the global interaction environment. The interpreter adds
to this environment any definition entered using the define and define-macro special
forms. Once the evaluation of an expression is completed, the value or values resulting
from the evaluation are output to the interaction channel by the pretty printer. The special
“void” object is not output. This object is returned by most procedures and special forms
which the Scheme standard defines as returning an unspecified value (e.g. write , set! ,
define).

Here is a sample interaction with gsi :
% gsi
Gambit Version 4.0 beta 8

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (map fact ’(1 2 3 4 5 6))
(1 2 6 24 120 720)
> (values (fact 10) (fact 40))
3628800
815915283247897734345611269596115894272000000000
> ,q

What happens when errors occur is explained in Chapter 5 [Debugging], page 19.

Chapter 2: The Gambit Scheme interpreter 3

2.2 Batch mode

In batch mode the command line arguments denote files to be loaded, REPL interactions
to start (‘- ’ option), and expressions to be evaluated (‘-e ’ option). Note that the ‘- ’ and
‘-e ’ options can be interspersed with the files on the command line and can occur multiple
times. The interpreter processes the command line arguments from left to right, loading
files with the load procedure and evaluating expressions with the eval procedure in the
global interaction environment. After this processing the interpreter exits.

When the file name has no extension the load procedure first attempts to load the file
with no extension as a Scheme source file. If that file doesn’t exist it completes the file
name with a ‘.o n’ extension with the highest consecutive version number starting with
1, and loads that file as an object file. If that file doesn’t exist the file extensions ‘.scm ’
and ‘.six ’ will be tried in that order. When the file name has an extension, the load
procedure will only attempt to load the file with that specific name.

When the extension of the file loaded is ‘.scm ’ the content of the file will be parsed
using the normal Scheme prefix syntax. When the extension of the file loaded is ‘.six ’ the
content of the file will be parsed using the Scheme infix syntax extension (see Section 15.11
[Scheme infix syntax extension], page 125). Otherwise, gsi will parse the file using the
normal Scheme prefix syntax.

The ports associated with ‘(current-input-port) ’, ‘(current-output-port) ’
and ‘(current-error-port) ’ initially refer respectively to the standard input
(‘stdin ’), standard output (‘stdout ’) and the standard error (‘stderr ’) of the
interpreter. This is true even in REPLs started with the ‘- ’ option. The usual interaction
channel (console or IDE’s console window) is still used to read expressions and commands
and to display results. This makes it possible to use REPLs to debug programs which
read the standard input and write to the standard output, even when these have been
redirected.

Here is a sample use of the interpreter in batch mode, under UNIX:
% cat m1.scm
(display "hello") (newline)
% cat m2.six
display("world"); newline();
% gsi m1.scm - m2.six -e " (pretty-print 1)(pretty-print 2) "
hello
> (define (display x) (write (reverse (string- >list x))))
> ,(c 0)
(#\d #\l #\r #\o #\w)
1
2

2.3 Customization

There are two ways to customize the interpreter. When the interpreter starts off it tries to
execute a ‘(load "˜˜/gambcext") ’ (for an explanation of how file names are interpreted
see Chapter 13 [Host environment], page 86). An error is not signaled when the file does
not exist. Interpreter extensions and patches that are meant to apply to all users and all
modes should go in that file.

Extensions which are meant to apply to a single user or to a specific working directory
are best placed in the initialization file, which is a file containing Scheme code. In all

Chapter 2: The Gambit Scheme interpreter 4

modes, the interpreter first tries to locate the initialization file by searching the following
locations: ‘gambcini ’ and ‘˜/gambcini ’ (with no extension, a ‘.scm ’ extension, and
a ‘.six ’ extension in that order). The first file that is found is examined as though the
expression (include initialization-file) had been entered at the read-eval-print
loop where initialization-file is the file that was found. Note that by using an include
the macros defined in the initialization file will be visible from the read-eval-print loop (this
would not have been the case if load had been used). The initialization file is not searched
for or examined when the ‘-f ’ option is specified.

2.4 Process exit status

The status is zero when the interpreter exits normally and is nonzero when the interpreter
exits due to an error. Here is the meaning of the exit statuses:

0 The execution of the primordial thread (i.e. the main thread) did not
encounter any error. It is however possible that other threads termi-
nated abnormally (by default threads other than the primordial thread
terminate silently when they raise an exception that is not handled).

64 The runtime options or the environment variable ‘GAMBCOPT’ contained
a syntax error or were invalid.

70 This normally indicates that an exception was raised in the primordial
thread and the exception was not handled.

71 There was a problem initializing the runtime system, for example insuf-
ficient memory to allocate critical tables.

For example, if the shell is sh :
% gsi -:d0 -e " (pretty-print (expt 2 100)) "
1267650600228229401496703205376
% echo $?
0
% gsi -:d0 nonexistent.scm
% echo $?
70
% gsi nonexistent.scm
*** ERROR IN ##main -- No such file or directory
(load "nonexistent.scm")
% echo $?
70
% gsi -:m4000000 # ask for a 4 gigabyte heap
*** malloc: vm_allocate(size=528384) failed (error code=3)
*** malloc[15068]: error: Can’t allocate region
% echo $?
71

2.5 Scheme scripts

The load procedure treats specially files that begin with the two characters ‘#! ’ and ‘@;’.
Such files are called script files. In addition to indicating that the file is a script, the first
line provides information about the source code language to be used by the load procedure.
After the two characters ‘#! ’ and ‘@;’ the system will search for the first substring matching
one of the following language specifying tokens:

Chapter 2: The Gambit Scheme interpreter 5

scheme-r4rs R4RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme-r5rs R5RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme-ieee-1178-1990
IEEE 1178-1990 language with prefix syntax, case-insensitivity, keyword
syntax not supported

scheme-srfi-0 R5RS language with prefix syntax and SRFI 0 support (i.e. cond-
expand special form), case-insensitivity, keyword syntax not supported

gsi-script Full Gambit Scheme language with prefix syntax, case-sensitivity, key-
word syntax supported

six-script Full Gambit Scheme language with infix syntax, case-sensitivity, key-
word syntax supported

If a language specifying token is not found, load will use the same language as a
nonscript file (i.e. it uses the file extension and runtime system options to determine the
language).

After processing the first line, load will parse the rest of the file (using the syntax of
the language indicated) and then execute it. When the file is being loaded because it is an
argument on the interpreter’s command line, the interpreter will:
• Setup the command-line procedure so that it returns a list containing the expanded

file name of the script file and the arguments following the script file on the command
line. This is done before the script is executed. The expanded file name of the script
file can be used to determine the directory that contains the script (i.e. (path-
directory (car (command-line)))).

• After the script is loaded the procedure main is called with the command-line argu-
ments. The way this is done depends on the language specifying token. For scheme-
r4rs , scheme-r5rs , scheme-ieee-1178-1990 , and scheme-srfi-0 , the main
procedure is called with the equivalent of (main (cdr (command-line))) and
main is expected to return a process exit status code in the range 0 to 255. This con-
forms to the “Running Scheme Scripts on Unix SRFI” (SRFI 22). For gsi-script
and six-script the main procedure is called with the equivalent of (apply main
(cdr (command-line))) and the process exit status code is 0 (main ’s result is ig-
nored). The Gambit-C system has a predefined main procedure which accepts any
number of arguments and returns 0, so it is perfectly valid for a script to not define
main and to do all its processing with top-level expressions (examples are given in the
next section).

• When main returns, the interpreter exits. The command-line arguments after a script
file are consequently not processed (however they do appear in the list returned by the
command-line procedure, after the script file’s expanded file name, so it is up to the
script to process them).

2.5.1 Scripts under UNIX and Mac OS X

Under UNIX and Mac OS X, the Gambit-C installation process creates the executable
‘gsi ’ and also the executables ‘six ’, ‘gsi-script ’, ‘six-script ’, ‘scheme-r5rs ’,

Chapter 2: The Gambit Scheme interpreter 6

‘scheme-srfi-0 ’, etc as links to ‘gsi ’. A Scheme script need only start with the name
of the desired Scheme language variant prefixed with ‘#! ’ and the directory where the
Gambit-C executables are stored. This script should be made executable by setting the
execute permission bits (with a ‘chmod +x script ’. Here is an example of a script which
lists on standard output the files in the current directory:

#!/usr/local/Gambit-C/bin/gsi-script
(for-each pretty-print (directory-files))

Here is another UNIX script, using the Scheme infix syntax extension, which takes a
single integer argument and prints on standard output the numbers from 1 to that integer:

#!/usr/local/Gambit-C/bin/six-script

void main (obj n_str)
{

int n = \string->number(n_str);
for (int i=1; i<=n; i++)

\pretty-print(i);
}

For maximal portability it is a good idea to start scripts indirectly through the
‘/usr/bin/env ’ program, so that the executable of the interpreter will be searched in
the user’s ‘PATH’. This is what SRFI 22 recommends. For example here is a script that
mimics the UNIX ‘cat ’ utility for text files:

#!/usr/bin/env gsi-script

(define (display-file filename)
(display (call-with-input-file filename

(lambda (port)
(read-line port #f)))))

(for-each display-file (cdr (command-line)))

2.5.2 Scripts under Microsoft Windows

Under Microsoft Windows, the Gambit-C installation process creates the exe-
cutable ‘gsi.exe ’ and ‘six.exe ’ and also the batch files ‘gsi-script.bat ’,
‘six-script.bat ’, ‘scheme-r5rs.bat ’, ‘scheme-srfi-0.bat ’, etc which simply
invoke ‘gsi.exe ’ with the same command line arguments. A Scheme script need only
start with the name of the desired Scheme language variant prefixed with ‘@;’. A UNIX
script can be converted to a Microsoft Windows script simply by changing the first line
and storing the script in a file whose name has a ‘.bat ’ or ‘.cmd ’ extension:

@;gsi-script %˜f0 %*
(display "files:\n")
(pretty-print (directory-files))

Note that Microsoft Windows always searches executables in the user’s ‘PATH’, so there
is no need for an indirection such as the UNIX ‘/usr/bin/env ’. However the first line
must end with ‘%˜f0 %* ’ to pass the expanded filename of the script and command line
arguments to the interpreter.

Chapter 3: The Gambit Scheme compiler 7

3 The Gambit Scheme compiler

Synopsis:

gsc [-: runtimeoption ,...] [-i] [-f] [-e expressions]
[-prelude expressions] [-postlude expressions]
[-dynamic] [-cc-options options] [-ld-options options]
[-warnings] [-verbose] [-report] [-expansion]
[-gvm] [-debug] [-track-scheme]
[-o output] [-c] [-flat] [-l base] [file ...]

3.1 Interactive mode

When no command line argument is present other than options the compiler behaves like
the interpreter in interactive mode. The only difference with the interpreter is that the
compilation related procedures listed in this chapter are also available (i.e. compile-
file , compile-file-to-c , etc).

3.2 Customization

Like the interpreter, the compiler will examine the initialization file unless the ‘-f ’ option
is specified.

3.3 Batch mode

In batch mode gsc takes a set of file names (either with ‘.scm ’, ‘.six ’, ‘.c ’, or no
extension) on the command line and compiles each Scheme source file into a C file. File
names with no extension are taken to be Scheme source files and a ‘.scm ’ extension is
automatically appended to the file name. For each Scheme source file ‘file .scm ’ and
‘file .six ’, the C file ‘file .c ’ stripped of its directory will be produced (i.e. the C file
is created in the current working directory).

The C files produced by the compiler serve two purposes. They will be processed by
a C compiler to generate object files, and they also contain information to be read by
Gambit’s linker to generate a link file. The link file is a C file that collects various linking
information for a group of modules, such as the set of all symbols and global variables used
by the modules. The linker is automatically invoked unless the ‘-c ’ or ‘-dynamic ’ options
appear on the command line.

Compiler options must be specified before the first file name and after the ‘-: ’ runtime
option (see Chapter 4 [Runtime options], page 17). If present, the ‘-f ’ and ‘-i ’ compiler
options must come first. The available options are:

-i Force interpreter mode.

-f Do not examine the initialization file.

-e expressions
Evaluate expressions in the interaction environment.

-prelude expressions
Add expressions to the top of the source code being compiled.

Chapter 3: The Gambit Scheme compiler 8

-postlude expressions
Add expressions to the bottom of the source code being compiled.

-cc-options options
Add options to the command that invokes the C compiler.

-ld-options options
Add options to the command that invokes the C linker.

-warnings Display warnings.

-verbose Display a trace of the compiler’s activity.

-report Display a global variable usage report.

-expansion Display the source code after expansion.

-gvm Generate a listing of the GVM code.

-debug Include debugging information in the code generated.

-track-scheme Generate ‘#line ’ directives referring back to the Scheme code.

-o output Set name of output file.

-c Only compile Scheme source files to C (no link file generated).

-dynamic Only compile Scheme source files to dynamically loadable object files
(no link file generated).

-flat Generate a flat link file instead of an incremental link file.

-l base Specify the link file of the base library to use for the link.

The ‘-i ’ option forces the compiler to process the remaining command line arguments
like the interpreter.

The ‘-e ’ option evaluates the specified expressions in the interaction environment.
The ‘-prelude ’ option adds the specified expressions to the top of the source code

being compiled. The main use of this option is to supply declarations on the command line.
For example the following invocation of the compiler will compile the file ‘bench.scm ’ in
unsafe mode:

% gsc -prelude " (declare (not safe)) " bench.scm

The ‘-postlude ’ option adds the specified expressions to the bottom of the source code
being compiled. The main use of this option is to supply the expression that will start the
execution of the program. For example:

% gsc -postlude " (start-bench) " bench.scm

The ‘-cc-options ’ option is only meaningful when the ‘-dynamic ’ option is also
used. The ‘-cc-options ’ option adds the specified options to the command that invokes
the C compiler. The main use of this option is to specify the include path, some symbols to
define or undefine, the optimization level, or any C compiler option that is different from
the default. For example:

% gsc -dynamic -cc-options " -U___SINGLE_HOST -O2 -I src/include " bench.scm

The ‘-ld-options ’ option is only meaningful when the ‘-dynamic ’ option is also
used. The ‘-ld-options ’ option adds the specified options to the command that invokes

Chapter 3: The Gambit Scheme compiler 9

the C linker. The main use of this option is to specify additional object files or libraries
that need to be linked, or any C linker option that is different from the default (such as the
library search path and flags to select between static and dynamic linking). For example:

% gsc -dynamic -ld-options " -L /usr/X11R6/lib -lX11 -static " bench.scm

The ‘-warnings ’ option displays on standard output all warnings that the compiler
may have.

The ‘-verbose ’ option displays on standard output a trace of the compiler’s activity.

The ‘-report ’ option displays on standard output a global variable usage report. Each
global variable used in the program is listed with 4 flags that indicate whether the global
variable is defined, referenced, mutated and called.

The ‘-expansion ’ option displays on standard output the source code after expansion
and inlining by the front end.

The ‘-gvm ’ option generates a listing of the intermediate code for the “Gambit Virtual
Machine” (GVM) of each Scheme file on ‘file .gvm ’.

The ‘-debug ’ option causes debugging information to be saved in the code generated.
With this option run time error messages indicate the source code and its location, the
backtraces are more precise, and the pp procedure will display the source code of compiled
procedures. The debugging information is large (the size of the object file is typically 2 to
4 times bigger).

The ‘-track-scheme ’ options causes the generation of ‘#line ’ directives that refer
back to the Scheme source code. This allows the use of a C debugger to debug Scheme
code.

The ‘-o ’ option sets the name of the output file generated by the compiler. When a
link file is being generated the name specified is that of the link file. Otherwise the name
specified is that of the C file (this option is ignored when the compiler is generating more
than one output file or is generating a dynamically loadable object file).

If the ‘-c ’ and ‘-dynamic ’ options do not appear on the command line, the Gambit
linker is invoked to generate the link file from the set of C files specified on the command
line or produced by the Gambit compiler. Unless the name is specified explicitly with the
‘-o ’ option, the link file is named ‘last _.c ’, where ‘last .c ’ is the last file in the set
of C files. When the ‘-c ’ option is specified, the Scheme source files are compiled to C
files. When the ‘-dynamic ’ option is specified, the Scheme source files are compiled to
dynamically loadable object files (‘.o n’ extension).

The ‘-flat ’ option is only meaningful when a link file is being generated (i.e. the ‘-c ’
and ‘-dynamic ’ options are absent). The ‘-flat ’ option directs the Gambit linker to
generate a flat link file. By default, the linker generates an incremental link file (see the
next section for a description of the two types of link files).

The ‘-l ’ option is only meaningful when an incremental link file is being generated (i.e.
the ‘-c ’, ‘-dynamic ’ and ‘-flat ’ options are absent). The ‘-l ’ option specifies the link
file (without the ‘.c ’ extension) of the base library to use for the incremental link. By
default the link file of the Gambit runtime library is used (i.e. ‘˜˜/lib/_gambc.c ’).

Chapter 3: The Gambit Scheme compiler 10

3.4 Link files

Gambit can be used to create programs and libraries of Scheme modules. This section
explains the steps required to do so and the role played by the link files.

In general, a program is composed of a set of Scheme modules and C modules. Some
of the modules are part of the Gambit runtime library and the other modules are supplied
by the user. When the program is started it must setup various global tables (including
the symbol table and the global variable table) and then sequentially execute the Scheme
modules (more or less as though they were being loaded one after another). The information
required for this is contained in one or more link files generated by the Gambit linker from
the C files produced by the Gambit compiler.

The order of execution of the Scheme modules corresponds to the order of the modules
on the command line which produced the link file. The order is usually important because
most modules define variables and procedures which are used by other modules (for this
reason the program’s main computation is normally started by the last module).

When a single link file is used to contain the linking information of all the Scheme
modules it is called a flat link file. Thus a program built with a flat link file contains in
its link file both information on the user modules and on the runtime library. This is fine
if the program is to be statically linked but is wasteful in a shared-library context because
the linking information of the runtime library can’t be shared and will be duplicated in all
programs (this linking information typically takes hundreds of kilobytes).

Flat link files are mainly useful to bundle multiple Scheme modules to make a runtime
library (such as the Gambit runtime library) or to make a single file that can be loaded
with the load procedure.

An incremental link file contains only the linking information that is not already con-
tained in a second link file (the “base” link file). Assuming that a flat link file was produced
when the runtime library was linked, a program can be built by linking the user modules
with the runtime library’s link file, producing an incremental link file. This allows the cre-
ation of a shared-library which contains the modules of the runtime library and its flat link
file. The program is dynamically linked with this shared-library and only contains the user
modules and the incremental link file. For small programs this approach greatly reduces the
size of the program because the incremental link file is small. A “hello world” program built
this way can be as small as 5 Kbytes. Note that it is perfectly fine to use an incremental
link file for statically linked programs (there is very little loss compared to a single flat link
file).

Incremental link files may be built from other incremental link files. This allows the
creation of shared-libraries which extend the functionality of the Gambit runtime library.

3.4.1 Building an executable program

The simplest way to create an executable program is to call up gsc to compile each Scheme
module into a C file and create an incremental link file. The C files and the link file must
then be compiled with a C compiler and linked (at the object file level) with the Gambit
runtime library and possibly other libraries (such as the math library and the dynamic
loading library). Here is for example how a program with three modules (one in C and two
in Scheme) can be built:

% uname -a

Chapter 3: The Gambit Scheme compiler 11

Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% cat m1.c
int power_of_2 (int x) { return 1<<x; }
% cat m2.scm
(c-declare "extern int power_of_2 ();")
(define pow2 (c-lambda (int) int "power_of_2"))
(define (twice x) (cons x x))
% cat m3.scm
(write (map twice (map pow2 ’(1 2 3 4)))) (newline)
% gsc -c m2.scm # create m2.c (note: .scm is optional)
% gsc -c m3.scm # create m3.c (note: .scm is optional)
% gsc m2.c m3.c # create the incremental link file m3 .c
% gcc m1.c m2.c m3.c m3_.c -lgambc
% ./a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Alternatively, the three invocations of gsc can be replaced by a single invocation:
% gsc m2 m3

3.4.2 Building a loadable library

To bundle multiple modules into a single file that can be dynamically loaded with the load
procedure, a flat link file is needed. When compiling the C files and link file generated,
the flag ‘-D___DYNAMIC’ must be passed to the C compiler. The three modules of the
previous example can be bundled in this way:

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% gsc -flat -o foo.c m2 m3
m2:
m3:
*** WARNING -- "cons" is not defined,
*** referenced in: ("m2.c")
*** WARNING -- "map" is not defined,
*** referenced in: ("m3.c")
*** WARNING -- "newline" is not defined,
*** referenced in: ("m3.c")
*** WARNING -- "write" is not defined,
*** referenced in: ("m3.c")
% gcc -shared -fPIC -D___DYNAMIC m1.c m2.c m3.c foo.c -o foo.o1
% gsi
Gambit Version 4.0 beta 8

> (load " foo ")
((2 . 2) (4 . 4) (8 . 8) (16 . 16))
"/users/feeley/foo.o1"
> ,q

The warnings indicate that there are no definitions (define s or set! s) of the variables
cons , map, newline and write in the set of modules being linked. Before ‘foo.o1 ’ is
loaded, these variables will have to be bound; either implicitly (by the runtime library) or
explicitly.

Here is a more complex example, under Solaris, which shows how to build a loadable
library ‘mymod.o1 ’ composed of the files ‘m1.scm ’, ‘m2.scm ’ and ‘x.c ’ that links to
system shared libraries (for X-windows):

% uname -a
SunOS ungava 5.6 Generic_105181-05 sun4m sparc SUNW,SPARCstation-20

Chapter 3: The Gambit Scheme compiler 12

% gsc -flat -o mymod.c m1 m2
m1:
m2:
*** WARNING -- "*" is not defined,
*** referenced in: ("m1.c")
*** WARNING -- "+" is not defined,
*** referenced in: ("m2.c")
*** WARNING -- "display" is not defined,
*** referenced in: ("m2.c" "m1.c")
*** WARNING -- "newline" is not defined,
*** referenced in: ("m2.c" "m1.c")
*** WARNING -- "write" is not defined,
*** referenced in: ("m2.c")
% gcc -fPIC -c -I../lib -D___DYNAMIC mymod.c m1.c m2.c x.c
% /usr/ccs/bin/ld -G -o mymod.o1 mymod.o m1.o m2.o x.o -lX11 -lsocket
% gsi mymod.o1
hello from m1
hello from m2
(f1 10) = 22
% cat m1.scm
(define (f1 x) (* 2 (f2 x)))
(display "hello from m1")
(newline)

(c-declare "#include \"x.h\"")
(define x-initialize (c-lambda (char-string) bool "x_initialize"))
(define x-display-name (c-lambda () char-string "x_display_name"))
(define x-bell (c-lambda (int) void "x_bell"))
% cat m2.scm
(define (f2 x) (+ x 1))
(display "hello from m2")
(newline)

(display "(f1 10) = ")
(write (f1 10))
(newline)

(x-initialize (x-display-name))
(x-bell 50) ; sound the bell at 50%
% cat x.c
#include <X11/Xlib.h>

static Display *display;

int x_initialize (char *display_name)
{

display = XOpenDisplay (display_name);
return display != NULL;

}

char *x_display_name (void)
{

return XDisplayName (NULL);
}

void x_bell (int volume)
{

XBell (display, volume);

Chapter 3: The Gambit Scheme compiler 13

XFlush (display);
}
% cat x.h
int x_initialize (char *display_name);
char *x_display_name (void);
void x_bell (int);

3.4.3 Building a shared-library

A shared-library can be built using an incremental link file or a flat link file. An incre-
mental link file is normally used when the Gambit runtime library (or some other library)
is to be extended with new procedures. A flat link file is mainly useful when building
a “primal” runtime library, which is a library (such as the Gambit runtime library) that
does not extend another library. When compiling the C files and link file generated, the
flags ‘-D___LIBRARY ’ and ‘-D___SHARED’ must be passed to the C compiler. The flag
‘-D___PRIMAL ’ must also be passed to the C compiler when a primal library is being built.

A shared-library ‘mylib.so ’ containing the two first modules of the previous example
can be built this way:

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% gsc -o mylib.c m2
% gcc -shared -fPIC -D___LIBRARY -D___SHARED m1.c m2.c mylib.c -o mylib.so

Note that this shared-library is built using an incremental link file (it extends the Gambit
runtime library with the procedures pow2 and twice). This shared-library can in turn be
used to build an executable program from the third module of the previous example:

% gsc -l mylib m3
% gcc m3.c m3_.c mylib.so -lgambc
% LD_LIBRARY_PATH=.:/usr/local/lib ./a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

3.4.4 Other compilation options

The performance of the code can be increased by passing the ‘-D___SINGLE_HOST’ flag
to the C compiler. This will merge all the procedures of a module into a single C procedure,
which reduces the cost of intra-module procedure calls. In addition the ‘-O ’ option can be
passed to the C compiler. For large modules, it will not be practical to specify both ‘-O ’
and ‘-D___SINGLE_HOST’ for typical C compilers because the compile time will be high
and the C compiler might even fail to compile the program for lack of memory.

Normally C compilers will not automatically search ‘/usr/local/Gambit-C/include ’
for header files so the flag ‘-I/usr/local/Gambit-C/include ’ should
be passed to the C compiler. Similarly, C compilers/linkers will not au-
tomatically search ‘/usr/local/Gambit-C/lib ’ for libraries so the flag
‘-L/usr/local/Gambit-C/lib ’ should be passed to the C compiler/linker.
Alternatives are given in Section 1.1 [Accessing the system files], page 1.

A variety of flags are needed by some C compilers when compiling a shared-library or
a dynamically loadable library. Some of these flags are: ‘-shared ’, ‘-call_shared ’,
‘-rdynamic ’, ‘-fpic ’, ‘-fPIC ’, ‘-Kpic ’, ‘-KPIC ’, ‘-pic ’, ‘+z ’. Check your compiler’s
documentation to see which flag you need.

Chapter 3: The Gambit Scheme compiler 14

3.5 Procedures specific to compiler

The Gambit Scheme compiler features the following procedures that are not available in
the Gambit Scheme interpreter.

[procedure](compile-file-to-c file [options [output]])
The file argument must be a string naming an existing file containing Scheme source
code. The extension can be omitted from file when the Scheme file has a ‘.scm ’ or
‘.six ’ extension. This procedure compiles the source file into a file containing C
code. By default, this file is named after file with the extension replaced with ‘.c ’.
However, when output is supplied the file is named ‘output ’.
Compilation options are given as a list of symbols after the file name. Any combi-
nation of the following options can be used: ‘verbose ’, ‘report ’, ‘expansion ’,
‘gvm’, and ‘debug ’.

[procedure](compile-file file [options])
The arguments of compile-file are the same as the first two arguments of
compile-file-to-c . The compile-file procedure compiles the source file
into an object file by first generating a C file and then compiling it with the C
compiler. The object file is named after file with the extension replaced with ‘.o n’,
where n is a positive integer that acts as a version number. The next available
version number is generated automatically by compile-file . Object files can
be loaded dynamically by using the load procedure. The ‘.o n’ extension can be
specified (to select a particular version) or omitted (to load the highest numbered
version). When older versions are no longer needed, all versions must be deleted and
the compilation must be repeated (this is necessary because the file name, including
the extension, is used to name some of the exported symbols of the object file).
Note that this procedure is only available on host operating systems that support
dynamic loading.

[procedure](link-incremental module-list [output [base]])
The first argument must be a non empty list of strings naming Scheme modules to link
(extensions must be omitted). The remaining optional arguments must be strings.
An incremental link file is generated for the modules specified in module-list. By
default the link file generated is named ‘last _.c ’, where last is the name of the last
module. However, when output is supplied the link file is named ‘output ’. The base
link file is specified by the base parameter. By default the base link file is the Gambit
runtime library link file ‘˜˜/lib/_gambc.c ’. However, when base is supplied the
base link file is named ‘base .c ’.
The following example shows how to build the executable program ‘hello ’ which
contains the two Scheme modules ‘m1.scm ’ and ‘m2.scm ’.

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% cat m1.scm
(display "hello") (newline)
% cat m2.scm
(display "world") (newline)
% gsc
Gambit Version 4.0 beta 8

Chapter 3: The Gambit Scheme compiler 15

> (compile-file-to-c " m1")
#t
> (compile-file-to-c " m2")
#t
> (link-incremental ’(" m1" " m2") " hello.c ")
> ,q
% gcc m1.c m2.c hello.c -lgambc -o hello
% ./hello
hello
world

[procedure](link-flat module-list [output])
The first argument must be a non empty list of strings. The first string must be the
name of a Scheme module or the name of a link file and the remaining strings must
name Scheme modules (in all cases extensions must be omitted). If it is supplied,
the second argument must be a string. A flat link file is generated for the modules
specified in module-list. By default the link file generated is named ‘last _.c ’, where
last is the name of the last module. However, when output is supplied the link file is
named ‘output ’.

The following example shows how to build the dynamically loadable Scheme library
‘lib.o1 ’ which contains the two Scheme modules ‘m1.scm ’ and ‘m2.scm ’.

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% cat m1.scm
(define (f x) (g (* x x)))
% cat m2.scm
(define (g y) (+ n y))
% gsc
Gambit Version 4.0 beta 8

> (compile-file-to-c " m1")
#t
> (compile-file-to-c " m2")
#t
> (link-flat ’(" m1" " m2") " lib.c ")
*** WARNING -- "*" is not defined,
*** referenced in: ("m1.c")
*** WARNING -- "+" is not defined,
*** referenced in: ("m2.c")
*** WARNING -- "n" is not defined,
*** referenced in: ("m2.c")
> ,q
% gcc -shared -fPIC -D___DYNAMIC m1.c m2.c lib.c -o lib.o1
% gsc
Gambit Version 4.0 beta 8

> (load " lib ")
*** WARNING -- Variable "n" used in module "m2" is undefined
"/users/feeley/lib.o1"
> (define n 10)
> (f 5)
35
> ,q

Chapter 3: The Gambit Scheme compiler 16

The warnings indicate that there are no definitions (define s or set! s) of the vari-
ables * , + and n in the modules contained in the library. Before the library is used,
these variables will have to be bound; either implicitly (by the runtime library) or
explicitly.

Chapter 4: Runtime options for all programs 17

4 Runtime options for all programs

Both gsi and gsc as well as executable programs compiled and linked using gsc take a
‘-: ’ option which supplies parameters to the runtime system. This option must appear first
on the command line. The colon is followed by a comma separated list of options with no
intervening spaces. The available options are:

mHEAPSIZE Set minimum heap size in kilobytes.

hHEAPSIZE Set maximum heap size in kilobytes.

l LIVEPERCENT Set heap occupation after garbage collection.

s Select standard Scheme mode.

S Select Gambit Scheme mode.

d[OPT...] Set debugging options.

=DIRECTORY Override the Gambit installation directory.

+ARGUMENT Add ARGUMENT to the command line before other arguments.

f [OPT...] Set file options.

t [OPT...] Set terminal options.

The ‘m’ option specifies the minimum size of the heap. The ‘m’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not shrink lower
than this size. By default, the minimum size is 0.

The ‘h’ option specifies the maximum size of the heap. The ‘h’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not grow larger
than this size. By default, there is no limit (i.e. the heap will grow until the virtual memory
is exhausted).

The ‘l ’ option specifies the percentage of the heap that will be occupied with live objects
after the heap is resized at the end of a garbage collection. The ‘l ’ is immediately followed
by an integer between 1 and 100 inclusively indicating the desired percentage. The garbage
collector resizes the heap to reach this percentage occupation. By default, the percentage
is 50.

The ‘s ’ option selects standard Scheme mode. In this mode the reader is case-insensitive
and keywords are not recognized. The ‘S’ option selects Gambit Scheme mode (the reader is
case-sensitive and recognizes keywords which end with a colon). By default Gambit Scheme
mode is used.

The ‘d’ option sets various debugging options. The letter ‘d’ is followed by a sequence
of letters indicating suboptions.

p Uncaught exceptions will be treated as “errors” in the primordial thread
only.

a Uncaught exceptions will be treated as “errors” in all threads.

r When an “error” occurs a new REPL will be started.

s When an “error” occurs a new REPL will be started. Moreover the
program starts in single-stepping mode.

Chapter 4: Runtime options for all programs 18

q When an “error” occurs the program will terminate with a nonzero exit
status.

i The REPL interaction channel will be the IDE REPL window (if the
IDE is available).

c The REPL interaction channel will be the console.

- The REPL interaction channel will be standard input and standard
output.

LEVEL The verbosity level is set to LEVEL (a digit from 0 to 9). At level 0 the
runtime system will not display error messages and warnings.

The default debugging options are equivalent to -:dpqi1 (i.e. an uncaught exception
in the primordial thread terminates the program after displaying an error message). When
the letter ‘d’ is not followed by suboptions, it is equivalent to -:dpri1 (i.e. a new REPL
is started only when an uncaught exception occurs in the primordial thread).

The ‘=’ option overrides the setting of the Gambit installation directory.
The ‘+’ option adds the text that follows to the command line before other arguments.
The ‘f ’ and ‘t ’ options specify the default settings of the ports created for files and

terminals respectively. The default character encoding and end-of-line encoding can be set
for both types of ports. For terminals the line-editing feature can be enabled or disabled.
The ‘f ’ and ‘t ’ must be followed by a sequence of these options:

a ASCII character encoding.

1 LATIN1 character encoding.

2 UCS2 character encoding.

4 UCS4 character encoding.

8 UTF8 character encoding.

n Native character encoding.

c End-of-line is encoded as CR (carriage-return).

l End-of-line is encoded as LF (linefeed)

cl End-of-line is encoded as CR-LF.

e Enable line-editing (applies to terminals only).

E Disable line-editing (applies to terminals only).

When the environment variable ‘GAMBCOPT’ is defined, the runtime system will take its
options from that environment variable. A ‘-: ’ option can be used to override some or all
of the runtime system options. For example:

% GAMBCOPT=d0,=̃ /my-gambit2
% export GAMBCOPT
% gsi -e ’(pretty-print (path-expand "˜˜")) (/ 1 0)’
"/u/feeley/my-gambit2/"
% echo $?
70
% gsi -:d1 -e ’(pretty-print (path-expand "˜˜")) (/ 1 0)’
"/u/feeley/my-gambit2/"
*** ERROR IN string@1.25 -- Divide by zero
(/ 1 0)

Chapter 5: Debugging 19

5 Debugging

5.1 Debugging model

The evaluation of an expression may stop before it is completed for the following reasons:
a. An evaluation error has occured, such as attempting to divide by zero.
b. The user has interrupted the evaluation (usually by typing 〈̂ C〉).
c. A breakpoint has been reached or (step) was evaluated.
d. Single-stepping mode is enabled.

When an evaluation stops, a message is displayed indicating the reason and location
where the evaluation was stopped. The location information includes, if known, the name
of the procedure where the evaluation was stopped and the source code location in the
format ‘stream @line . column ’, where stream is either a string naming a file or a symbol
within parentheses, such as ‘(console) ’.

A nested REPL is then initiated in the context of the point of execution where the
evaluation was stopped. The nested REPL’s continuation and evaluation environment are
the same as the point where the evaluation was stopped. For example when evaluating the
expression ‘(let ((y (- 1 1))) (* (/ x y) 2)) ’, a “divide by zero” error is reported
and the nested REPL’s continuation is the one that takes the result and multiplies it
by two. The REPL’s lexical environment includes the lexical variable ‘y ’. This allows
the inspection of the evaluation context (i.e. the lexical and dynamic environments and
continuation), which is particularly useful to determine the exact location and cause of an
error.

The prompt of nested REPLs includes the nesting level; ‘1>’ is the prompt at the first
nesting level, ‘2>’ at the second nesting level, and so on. An end of file (usually 〈̂ D〉) will
cause the current REPL to be terminated and the enclosing REPL (one nesting level less)
to be resumed.

At any time the user can examine the frames in the REPL’s continuation, which is
useful to determine which chain of procedure calls lead to an error. A backtrace that lists
the chain of active continuation frames in the REPL’s continuation can be obtained with
the ‘,b ’ command. The frames are numbered from 0, that is frame 0 is the most recent
frame of the continuation where execution stopped, frame 1 is the parent frame of frame
0, and so on. It is also possible to move the REPL to a specific parent continuation (i.e.
a specific frame of the continuation where execution stopped) with the ‘,+ ’, ‘,- ’ and ‘, n’
commands (where n is the frame number). When the frame number of the frame being
examined is not zero, it is shown in the prompt after the nesting level, for example ‘1\5> ’
is the prompt when the REPL nesting level is 1 and the frame number is 5.

Expressions entered at a nested REPL are evaluated in the environment (both lexical
and dynamic) of the continuation frame currently being examined if that frame was created
by interpreted Scheme code. If the frame was created by compiled Scheme code then
expressions get evaluated in the global interaction environment. This feature may be used
in interpreted code to fetch the value of a variable in the current frame or to change its value
with set! . Note that some special forms (define in particular) can only be evaluated in
the global interaction environment.

Chapter 5: Debugging 20

5.2 Debugging commands

In addition to expressions, the REPL accepts the following special “comma” commands:

,? Give a summary of the REPL commands.

,q Terminate the current thread (note that terminating the primordial
thread terminates the program). To terminate the program from any
thread, call the exit procedure.

,t Return to the outermost REPL, also known as the “top-level REPL”.

,d Leave the current REPL and resume the enclosing REPL. This com-
mand does nothing in the top-level REPL.

,(c expr) Leave the current REPL and continue the computation that initiated
the REPL with a specific value. This command can only be used to
continue a computation that signaled an error. The expression expr is
evaluated in the current context and the resulting value is returned as
the value of the expression which signaled the error. For example, if the
evaluation of the expression ‘(* (/ x y) 2) ’ signaled an error because
‘y ’ is zero, then in the nested REPL a ‘,(c (+ 4 y)) ’ will resume the
computation of ‘(* (/ x y) 2) ’ as though the value of ‘(/ x y) ’ was
4. This command must be used carefully because the context where
the error occured may rely on the result being of a particular type. For
instance a ‘,(c #f) ’ in the previous example will cause ‘* ’ to signal
a type error (this problem is the most troublesome when debugging
Scheme code that was compiled with type checking turned off so be
careful).

,c Leave the current REPL and continue the computation that initiated
the REPL. This command can only be used to continue a computation
that was stopped due to a user interrupt, breakpoint or a single-step.

,s Leave the current REPL and continue the computation that initiated
the REPL in single-stepping mode. The computation will perform an
evaluation step (as defined by step-level-set!) and then stop, caus-
ing a nested REPL to be entered. Just before the evaluation step is
performed, a line is displayed (in the same format as trace) which
indicates the expression that is being evaluated. If the evaluation step
produces a result, the result is also displayed on another line. A nested
REPL is then entered after displaying a message which describes the
next step of the computation. This command can only be used to con-
tinue a computation that was stopped due to a user interrupt, break-
point or a single-step.

,l This command is similar to ‘,s ’ except that it “leaps” over procedure
calls, that is procedure calls are treated like a single step. Single-
stepping mode will resume when the procedure call returns, or if and
when the execution of the called procedure encounters a breakpoint.

Chapter 5: Debugging 21

, n Move to frame number n of the continuation. After changing the cur-
rent frame, a one-line summary of the frame is displayed as if the ‘,y ’
command was entered.

,+ Move to the next frame in the chain of continuation frames (i.e. towards
older continuation frames). After changing the current frame, a one-line
summary of the frame is displayed as if the ‘,y ’ command was entered.

,- Move to the previous frame in the chain of continuation frames (i.e.
towards more recently created continuation frames). After changing
the current frame, a one-line summary of the frame is displayed as if
the ‘,y ’ command was entered.

,y Display a one-line summary of the current frame. The information is
displayed in four fields. The first field is the frame number. The second
field is the procedure that created the frame or ‘(interaction) ’ if the
frame was created by an expression entered at the REPL. The remaining
fields describe the subproblem associated with the frame, that is the
expression whose value is being computed. The third field is the location
of the subproblem’s source code and the fourth field is a reproduction of
the source code, possibly truncated to fit on the line. The last two fields
may be missing if that information is not available. In particular, the
third field is missing when the frame was created by a user call to the
‘eval ’ procedure, and the last two fields are missing when the frame
was created by a compiled procedure not compiled with the ‘-debug ’
option.

,b Display a backtrace summarizing each frame in the chain of continua-
tion frames starting with the current frame. For each frame, the same
information as for the ‘,y ’ command is displayed (except that location
information is displayed in the format ‘stream @line : column ’). If
there are more that 15 frames in the chain of continuation frames, some
of the middle frames will be omitted.

,i Pretty print the procedure that created the current frame or
‘(interaction) ’ if the frame was created by an expression entered
at the REPL. Compiled procedures will only be pretty printed when
they are compiled with the ‘-debug ’ option.

,e Display the environment which is accessible from the current frame.
Both the lexical and dynamic environments are displayed. However,
only non-global lexical variables are displayed and only if the frame was
created by interpreted code or code compiled with the ‘-debug ’ option.
Due to space safety considerations and compiler optimizations, some of
the lexical variable bindings may be missing. Lexical variable bind-
ings are displayed using the format ‘variable = expression ’ and
dynamically-bound parameter bindings are displayed using the format
‘(parameter) = expression ’. Note that expression can be a self-
evaluating expression (number, string, boolean, character, ...), a quoted
expression, a lambda expression or a global variable (the last two cases,

Chapter 5: Debugging 22

which are only used when the value of the variable or parameter is a
procedure, simplifies the debugging of higher-order procedures). A pa-
rameter can be a quoted expression or a global variable. Lexical bind-
ings are displayed in inverse binding order (most deeply nested first)
and shadowed variables are included in the list.

Here is a sample interaction with gsi :
% gsi
Gambit Version 4.0 beta 8

> (define (invsqr x) (/ 1 (expt x 2)))
> (define (mymap fn lst)

(define (mm in)
(if (null? in)

’()
(cons (fn (car in)) (mm (cdr in)))))

(mm lst))
> (mymap invsqr ’(5 2 hello 9 1))
*** ERROR IN invsqr, (console)@1.25 -- (Argument 1) NUMBER expected
(expt ’hello 2)
1> ,i
#<procedure #2 invsqr> =
(lambda (x) (/ 1 (expt x 2)))
1> ,e
x = ’hello
(current-exception-handler) = primordial-exception-handler
(current-input-port) = ’#<input-output-port #3 (console)>
(current-output-port) = ’#<input-output-port #3 (console)>
(current-directory) = "/u/feeley/work/"
(’#<procedure #4>) = ’#<repl-context #5>
1> ,b
0 invsqr (console)@1:25 (expt x 2)
1 #<procedure #6> (console)@6:17 (fn (car in))
2 #<procedure #6> (console)@6:31 (mm (cdr in))
3 #<procedure #6> (console)@6:31 (mm (cdr in))
4 (interaction) (console)@8:1 (mymap invsqr ’(5 2 hel...
5 ##main
1> , +
1 #<procedure #6> (console)@6.17 (fn (car in))
1\1> (pp #6)
(lambda (in) (if (null? in) ’() (cons (fn (car in)) (mm (cdr in)))))
1\1> ,e
in = ’(hello 9 1)
mm = (lambda (in) (if (null? in) ’() (cons (fn (car in)) (mm (cdr in)))))
fn = invsqr
lst = ’(5 2 hello 9 1)
(current-exception-handler) = primordial-exception-handler
(current-input-port) = ’#<input-output-port #3 (console)>
(current-output-port) = ’#<input-output-port #3 (console)>
(current-directory) = "/u/feeley/work/"
(’#<procedure #4>) = ’#<repl-context #5>
1\1> fn
#<procedure #2 invsqr>
1\1> (pp fn)
(lambda (x) (/ 1 (expt x 2)))
1\1> , +
2 #<procedure #6> (console)@6.31 (mm (cdr in))

Chapter 5: Debugging 23

1\2> ,e
in = ’(2 hello 9 1)
mm = (lambda (in) (if (null? in) ’() (cons (fn (car in)) (mm (cdr in)))))
fn = invsqr
lst = ’(5 2 hello 9 1)
(current-exception-handler) = primordial-exception-handler
(current-input-port) = ’#<input-output-port #3 (console)>
(current-output-port) = ’#<input-output-port #3 (console)>
(current-directory) = "/u/feeley/work/"
(’#<procedure #4>) = ’#<repl-context #5>
1\2> ,(c (list 3 4 5))
(1/25 1/4 3 4 5)
> ,q

5.3 Procedures related to debugging

[procedure](trace proc . . .)
[procedure](untrace proc . . .)

The trace procedure starts tracing calls to the specified procedures. When a traced
procedure is called, a line containing the procedure and its arguments is displayed
(using the procedure call expression syntax). The line is indented with a sequence of
vertical bars which indicate the nesting depth of the procedure’s continuation. After
the vertical bars is a greater-than sign which indicates that the evaluation of the call
is starting.
When a traced procedure returns a result, it is displayed with the same indentation
as the call but without the greater-than sign. This makes it easy to match calls and
results (the result of a given call is the value at the same indentation as the greater-
than sign). If a traced procedure P1 performs a tail call to a traced procedure P2,
then P2 will use the same indentation as P1. This makes it easy to spot tail calls.
The special handling for tail calls is needed to preserve the space complexity of the
program (i.e. tail calls are implemented as required by Scheme even when they involve
traced procedures).
The untrace procedure stops tracing calls to the specified procedures. When no
arguments is passed to the trace procedure, the list of procedures currently being
traced is returned. The void object is returned by the trace procedure when it
is passed one or more arguments. When no argument is passed to the untrace
procedure stops all tracing and returns the void object. A compiled procedure may
be traced but only if it is bound to a global variable.
For example:

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (trace fact)
> (fact 5)
| > (fact 5)
| | > (fact 4)
| | | > (fact 3)
| | | | > (fact 2)
| | | | | > (fact 1)
| | | | | 1
| | | | 2
| | | 6
| | 24

Chapter 5: Debugging 24

| 120
120
> (trace -)
*** WARNING -- Rebinding global variable "-" to an interpreted procedure
> (define (fact-iter n r) (if (< n 2) r (fact-iter (- n 1) (* n r))))
> (trace fact-iter)
> (fact-iter 5 1)
| > (fact-iter 5 1)
| | > (- 5 1)
| | 4
| > (fact-iter 4 5)
| | > (- 4 1)
| | 3
| > (fact-iter 3 20)
| | > (- 3 1)
| | 2
| > (fact-iter 2 60)
| | > (- 2 1)
| | 1
| > (fact-iter 1 120)
| 120
120
> (trace)
(#<procedure fact-iter> #<procedure -> #<procedure fact>)
> (untrace)
> (fact 5)
120

[procedure](step)
[procedure](step-level-set! level)

The step procedure enables single-stepping mode. After the call to step the com-
putation will stop just before the interpreter executes the next evaluation step (as
defined by step-level-set!). A nested REPL is then started. Note that because
single-stepping is stopped by the REPL whenever the prompt is displayed it is point-
less to enter (step) by itself. On the other hand entering (begin (step) expr)
will evaluate expr in single-stepping mode.
The procedure step-level-set! sets the stepping level which determines the gran-
ularity of the evaluation steps when single-stepping is enabled. The stepping level
level must be an exact integer in the range 0 to 7. At a level of 0, the interpreter
ignores single-stepping mode. At higher levels the interpreter stops the computation
just before it performs the following operations, depending on the stepping level:
1. procedure call
2. delay special form and operations at lower levels
3. lambda special form and operations at lower levels
4. define special form and operations at lower levels
5. set! special form and operations at lower levels
6. variable reference and operations at lower levels
7. constant reference and operations at lower levels

The default stepping level is 7.
For example:

Chapter 5: Debugging 25

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (step-level-set! 1)
> (begin (step) (fact 5))
*** STOPPED IN (stdin)@3.15
1> ,s
| > (fact 5)
*** STOPPED IN fact, (stdin)@1.22
1> ,s
| | > (< n 2)
| | #f
*** STOPPED IN fact, (stdin)@1.43
1> ,s
| | > (- n 1)
| | 4
*** STOPPED IN fact, (stdin)@1.37
1> ,s
| | > (fact (- n 1))
*** STOPPED IN fact, (stdin)@1.22
1> ,s
| | | > (< n 2)
| | | #f
*** STOPPED IN fact, (stdin)@1.43
1> ,s
| | | > (- n 1)
| | | 3
*** STOPPED IN fact, (stdin)@1.37
1> ,l
| | | > (fact (- n 1))
| | | 6
*** STOPPED IN fact, (stdin)@1.32
1> ,l
| | > (* n (fact (- n 1)))
| | 24
*** STOPPED IN fact, (stdin)@1.32
1> ,l
| > (* n (fact (- n 1)))
| 120
120

[procedure](break proc . . .)
[procedure](unbreak proc . . .)

The break procedure places a breakpoint on each of the specified procedures. When
a procedure is called that has a breakpoint, the interpreter will enable single-stepping
mode (as if step had been called). This typically causes the computation to stop
soon inside the procedure if the stepping level is high enough.
The unbreak procedure removes the breakpoints on the specified procedures. With
no argument, break returns the list of procedures currently containing breakpoints.
The void object is returned by break if it is passed one or more arguments. With
no argument unbreak removes all the breakpoints and returns the void object. A
breakpoint can be placed on a compiled procedure but only if it is bound to a global
variable.
For example:

> (define (double x) (+ x x))
> (define (triple y) (- (double (double y)) y))
> (define (f z) (* (triple z) 10))

Chapter 5: Debugging 26

> (break double)
> (break -)
*** WARNING -- Rebinding global variable "-" to an interpreted procedure
> (f 5)
*** STOPPED IN double, (stdin)@1.21
1> ,b
0 double (stdin)@1:21 +
1 triple (stdin)@2:31 (double y)
2 f (stdin)@3:18 (triple z)
3 (interaction) (stdin)@6:1 (f 5)
4 ##initial-continuation
1> ,e
x = 5
1> ,c
*** STOPPED IN double, (stdin)@1.21
1> ,c
*** STOPPED IN f, (stdin)@3.29
1> ,c
150
> (break)
(#<procedure -> #<procedure double>)
> (unbreak)
> (f 5)
150

[procedure](proper-tail-calls-set! proper?)
This procedure sets a flag that controls how the interpreter handles tail calls. When
proper? is #f the interpreter will treat tail calls like nontail calls, that is a new
continuation will be created for the call. This setting is useful for debugging, because
when a primitive signals an error the location information will point to the call site of
the primitive even if this primitive was called with a tail call. The default setting of
this flag is #t , which means that a tail call will reuse the continuation of the calling
function.

The setting of this flag only affects code that is subsequently processed by load or
eval , or entered at the REPL.

[procedure](display-environment-set! display?)
This procedure sets a flag that controls the automatic display of the environment by
the REPL. If display? is true, the environment is displayed by the REPL before the
prompt. The default setting is not to display the environment.

[procedure](object->serial-number obj)
[procedure](serial-number->object n)

All Scheme objects are uniquely identified with a serial number which is an exact
integer. The object->serial-number procedure returns the serial number of
object obj. This serial number is only allocated the first time the object->serial-
number procedure is called on that object. Objects which do not have an external
textual representation that can be read by the read procedure, use an external
textual representation that includes a serial number of the form #n. Consequently, the
procedures write , pretty-print , etc will call the object->serial-number
procedure to get the serial number, and this may cause the serial number to be
allocated.

Chapter 5: Debugging 27

The serial-number->object procedure takes an exact integer argument n and
returns the object whose serial number is n, of #f if that object no longer exists
or the serial number has never been used before. The reader defines the following
abbreviation for calling serial-number->object : the syntax #n, where n is a
sequence of decimal digits and it is not followed by ‘=’ or ‘#’, is equivalent to the list
(serial-number->object n) .
For example:

> (define z (list (lambda (x) (* x x)) (lambda (y) (/ 1 y))))
> z
(#<procedure #2> #<procedure #3>)
> (#3 10)
1/10
> ’(#3 10)
((serial-number->object 3) 10)
> car
#<procedure #4 car>
> (#4 z)
#<procedure #2>

[procedure](pretty-print obj [port])
This procedure pretty-prints obj on the port port. If it is not specified, port defaults
to the current output-port.
For example:

> (pretty-print
(let* ((x ’(1 2 3 4)) (y (list x x x))) (list y y y)))

(((1 2 3 4) (1 2 3 4) (1 2 3 4))
((1 2 3 4) (1 2 3 4) (1 2 3 4))
((1 2 3 4) (1 2 3 4) (1 2 3 4)))

[procedure](pp obj [port])
This procedure pretty-prints obj on the port port. When obj is a procedure created
by the interpreter or a procedure created by code compiled with the ‘-debug ’ option,
the procedure’s source code is displayed. If it is not specified, port defaults to the
interaction channel (i.e. the output will appear at the REPL).
For example:

> (define (f g) (+ (time (g 100)) (time (g 1000))))
> (pp f)
(lambda (g)

(+ (##time (lambda () (g 100)) ’(g 100))
(##time (lambda () (g 1000)) ’(g 1000))))

5.4 Console line-editing

The console implements a simple Scheme-friendly line-editing user-interface that is enabled
by default. It offers parentheses balancing, a history of previous commands, and several
emacs-compatible keyboard commands. The user’s input is displayed in a bold font and
the output produced by the system is in a plain font. Here are the keyboard commands
available (where the ‘M-’ prefix means the escape key is typed and the ‘C- ’ prefix means
the control key is pressed):

C-d Generate an end-of-file when the line is empty, otherwise delete charac-
ter at cursor.

Chapter 5: Debugging 28

C-a Move cursor to beginning of line.

C-e Move cursor to end of line.

C-b or left-arrow Move cursor left one character.

M-C-b or M-left-arrow
Move cursor left one S-expression.

C-f or right-arrow
Move cursor right one character.

M-C-f or M-right-arrow
Move cursor right one S-expression.

C-p or up-arrow Move to previous line in history.

C-n or down-arrow
Move to next line in history.

C-t Transpose character at cursor with previous character.

M-C-t Transpose S-expression at cursor with previous S-expression.

C-l Clear console and redraw line being edited.

C- nul Set the mark to the cursor.

C-w Delete the text between the cursor and the mark and keep a copy of
this text on the internal clipboard.

C-k Delete the text from the cursor to the end of the line and keep a copy
of this text on the internal clipboard.

C-y Paste the text that is on the internal clipboard.

F8 Same as typing ‘#||#,c; ’ (REPL command to continue the computa-
tion).

F9 Same as typing ‘#||#,-; ’ (REPL command to move to newer frame).

F10 Same as typing ‘#||#,+; ’ (REPL command to move to older frame).

F11 Same as typing ‘#||#,s; ’ (REPL command to step the computation).

F12 Same as typing ‘#||#,l; ’ (REPL command to leap the computation).

Note that on Mac OS X, depending on your configuration, you may have to press the fn
key to access the function key F12 and the option key to access the other function keys.

5.5 Emacs interface

Gambit comes with the Emacs package ‘gambit.el ’ which provides a nice environment
for running Gambit from within the Emacs editor. This package filters the standard out-
put of the Gambit process and when it intercepts a location information (in the format
‘stream @line . column ’ where stream is either ‘(stdin) ’ when the expression was ob-
tained from standard input, ‘(console) ’ when the expression was obtained from the con-
sole, or a string naming a file) it opens a window to highlight the corresponding expression.

To use this package, make sure the file ‘gambit.el ’ is accessible from your load-path
and that the following lines are in your ‘.emacs ’ file:

Chapter 5: Debugging 29

(autoload ’gambit-inferior-mode "gambit" "Hook Gambit mode into cmuscheme.")
(autoload ’gambit-mode "gambit" "Hook Gambit mode into scheme.")
(add-hook ’inferior-scheme-mode-hook (function gambit-inferior-mode))
(add-hook ’scheme-mode-hook (function gambit-mode))
(setq scheme-program-name "gsi -:d-")

Alternatively, if you don’t mind always loading this package, you can simply add this
line to your ‘.emacs ’ file:

(require ’gambit)

You can then start an inferior Gambit process by typing ‘M-x run-scheme ’. The
commands provided in ‘cmuscheme’ mode will be available in the Gambit interaction
buffer (i.e. ‘*scheme* ’) and in buffers attached to Scheme source files. Here is a list of the
most useful commands (for a complete list type ‘C-h m’ in the Gambit interaction buffer):

C-x C-e Evaluate the expression which is before the cursor (the expression will
be copied to the Gambit interaction buffer).

C-c C-z Switch to Gambit interaction buffer.

C-c C-l Load a file (file attached to current buffer is default) using (load
file) .

C-c C-k Compile a file (file attached to current buffer is default) using
(compile-file file) .

The file ‘gambit.el ’ provides these additional commands:

F8 or C-c c Continue the computation (same as typing ‘#||#,c; ’ to the REPL).

F9 or C-c] Move to newer frame (same as typing ‘#||#,-; ’ to the REPL).

F10 or C-c [Move to older frame (same as typing ‘#||#,+; ’ to the REPL).

F11 or C-c s Step the computation (same as typing ‘#||#,s; ’ to the REPL).

F12 or C-c l Leap the computation (same as typing ‘#||#,l; ’ to the REPL).

C-c _ Removes the last window that was opened to highlight an expression.

The two keystroke version of these commands can be shortened to ‘M-c ’, ‘M-[’, ‘M-] ’,
‘M-s ’, ‘M-l ’, and ‘M-_’ respectively by adding this line to your ‘.emacs ’ file:

(setq gambit-repl-command-prefix "\e")

This is more convenient to type than the two keystroke ‘C-c ’ based sequences but the
purist may not like this because it does not follow normal Emacs conventions.

Here is what a typical ‘.emacs ’ file will look like:
(setq load-path

(cons "/usr/local/Gambit-C/share/emacs/site-lisp" ; location of gambit.el
load-path))

(setq scheme-program-name "/tmp/gsi -:d-") ; if gsi not in executable path
(setq gambit-highlight-color "gray") ; if you don’t like the default
(setq gambit-repl-command-prefix "\e") ; if you want M-c, M-s, etc
(require ’gambit)

5.6 IDE

The implementation and documentation for the Gambit IDE are not yet complete.

Chapter 6: Scheme extensions 30

6 Scheme extensions

6.1 Extensions to standard procedures

[procedure](transcript-on file)
[procedure](transcript-off)

These procedures do nothing.

6.2 Extensions to standard special forms

[special form](lambda lambda-formals body)
[special form](define (variable define-formals) body)

lambda-formals = (formal-argument-list) | r4rs-lambda-formals

define-formals = formal-argument-list | r4rs-define-formals

formal-argument-list = reqs opts rest keys

reqs = required-formal-argument*
required-formal-argument = variable

opts = #!optional optional-formal-argument* | empty

optional-formal-argument = variable | (variable initializer)

rest = #!rest rest-formal-argument | empty

rest-formal-argument = variable

keys = #!key keyword-formal-argument* | empty

keyword-formal-argument = variable | (variable initializer)

initializer = expression

r4rs-lambda-formals = (variable*) | (variable+ . variable) | variable

r4rs-define-formals = variable* | variable* . variable

These forms are extended versions of the lambda and define special forms of stan-
dard Scheme. They allow the use of optional and keyword formal arguments with the
syntax and semantics of the DSSSL standard.
When the procedure introduced by a lambda (or define) is applied to a list of
actual arguments, the formal and actual arguments are processed as specified in the
R4RS if the lambda-formals (or define-formals) is a r4rs-lambda-formals (or r4rs-
define-formals), otherwise they are processed as specified in the DSSSL language
standard:
a. Variables in required-formal-arguments are bound to successive actual arguments

starting with the first actual argument. It shall be an error if there are fewer
actual arguments than required-formal-arguments.

b. Next variables in optional-formal-arguments are bound to remaining actual ar-
guments. If there are fewer remaining actual arguments than optional-formal-
arguments, then the variables are bound to the result of evaluating initializer,
if one was specified, and otherwise to #f . The initializer is evaluated in an
environment in which all previous formal arguments have been bound.

Chapter 6: Scheme extensions 31

c. If there is a rest-formal-argument, then it is bound to a list of all remaining actual
arguments. These remaining actual arguments are also eligible to be bound to
keyword-formal-arguments. If there is no rest-formal-argument and there are no
keyword-formal-arguments, then it shall be an error if there are any remaining
actual arguments.

d. If #!key was specified in the formal-argument-list, there shall be an even number
of remaining actual arguments. These are interpreted as a series of pairs, where
the first member of each pair is a keyword specifying the argument name, and
the second is the corresponding value. It shall be an error if the first member
of a pair is not a keyword. It shall be an error if the argument name is not the
same as a variable in a keyword-formal-argument, unless there is a rest-formal-
argument. If the same argument name occurs more than once in the list of
actual arguments, then the first value is used. If there is no actual argument for
a particular keyword-formal-argument, then the variable is bound to the result
of evaluating initializer if one was specified, and otherwise to #f . The initializer
is evaluated in an environment in which all previous formal arguments have been
bound.

It shall be an error for a variable to appear more than once in a formal-argument-list.

It is unspecified whether variables receive their value by binding or by assignment.
Currently the compiler and interpreter use different methods, which can lead to dif-
ferent semantics if call-with-current-continuation is used in an initializer.
Note that this is irrelevant for DSSSL programs because call-with-current-
continuation does not exist in DSSSL.

For example:

> ((lambda (#!rest x) x) 1 2 3)
(1 2 3)
> (define (f a #!optional b) (list a b))
> (define (g a #!optional (b a) #!key (c (* a b))) (list a b c))
> (define (h a #!rest b #!key c) (list a b c))
> (f 1)
(1 #f)
> (f 1 2)
(1 2)
> (g 3)
(3 3 9)
> (g 3 4)
(3 4 12)
> (g 3 4 c: 5)
(3 4 5)
> (g 3 4 c: 5 c: 6)
(3 4 5)
> (h 7)
(7 () #f)
> (h 7 c: 8)
(7 (c: 8) 8)
> (h 7 c: 8 z: 9)
(7 (c: 8 z: 9) 8)

Chapter 6: Scheme extensions 32

6.3 Miscellaneous extensions

[special form](include file)
The file argument must be a string naming an existing file containing Scheme source
code. The include special form splices the content of the specified source file. This
form can only appear where a define form is acceptable.
For example:

(include "macros.scm")

(define (f lst)
(include "sort.scm")
(map sqrt (sort lst)))

[special form](define-macro (name arg . . .) body)
Define name as a macro special form which expands into body. This form can only
appear where a define form is acceptable. Macros are lexically scoped. The scope
of a local macro definition extends from the definition to the end of the body of the
surrounding binding construct. Macros defined at the top level of a Scheme module
are only visible in that module. To have access to the macro definitions contained in
a file, that file must be included using the include special form. Macros which are
visible from the REPL are also visible during the compilation of Scheme source files.
For example:

(define-macro (push val var)
‘(set! ,var (cons ,val ,var)))

(define-macro (unless test . body)
‘(if ,test #f (begin ,@body)))

To examine the code into which a macro expands you can use the compiler’s
‘-expansion ’ option or the pp procedure. For example:

> (define-macro (push val var) ‘(set! ,var (cons ,val ,var)))
> (pp (lambda () (push 1 stack) (push 2 stack) (push 3 stack)))
(lambda ()

(set! stack (cons 1 stack))
(set! stack (cons 2 stack))
(set! stack (cons 3 stack)))

[special form](declare declaration . . .)
This form introduces declarations to be used by the compiler (currently the inter-
preter ignores the declarations). This form can only appear where a define form
is acceptable. Declarations are lexically scoped in the same way as macros. The
following declarations are accepted by the compiler:

(dialect) Use the given dialect’s semantics. dialect can be: ‘ieee-scheme ’
or ‘r4rs-scheme ’.

(strategy) Select block compilation or separate compilation. In block com-
pilation, the compiler assumes that global variables defined in the
current file that are not mutated in the file will never be mutated.
strategy can be: ‘block ’ or ‘separate ’.

([not] inline) Allow (or disallow) inlining of user procedures.

Chapter 6: Scheme extensions 33

(inlining-limit n)
Select the degree to which the compiler inlines user procedures. n
is the upper-bound, in percent, on code expansion that will result
from inlining. Thus, a value of 300 indicates that the size of the
program will not grow by more than 300 percent (i.e. it will be
at most 4 times the size of the original). A value of 0 disables
inlining. The size of a program is the total number of subexpres-
sions it contains (i.e. the size of an expression is one plus the size
of its immediate subexpressions). The following conditions must
hold for a procedure to be inlined: inlining the procedure must
not cause the size of the call site to grow more than specified by
the inlining limit, the site of definition (the define or lambda)
and the call site must be declared as (inline) , and the com-
piler must be able to find the definition of the procedure referred
to at the call site (if the procedure is bound to a global variable,
the definition site must have a (block) declaration). Note that
inlining usually causes much less code expansion than specified
by the inlining limit (an expansion around 10% is common for
n=300).

([not] lambda-lift)
Lambda-lift (or don’t lambda-lift) locally defined procedures.

([not] constant-fold)
Allow (or disallow) constant-folding of primitive procedures.

([not] standard-bindings var ...)
The given global variables are known (or not known) to be equal
to the value defined for them in the dialect (all variables defined
in the standard if none specified).

([not] extended-bindings var ...)
The given global variables are known (or not known) to be equal
to the value defined for them in the runtime system (all variables
defined in the runtime if none specified).

([not] safe) Generate (or don’t generate) code that will prevent fatal errors at
run time. Note that in ‘safe ’ mode certain semantic errors will
not be checked as long as they can’t crash the system. For example
the primitive char=? may disregard the type of its arguments in
‘safe ’ as well as ‘not safe ’ mode.

([not] interrupts-enabled)
Generate (or don’t generate) interrupt checks. Interrupt checks
are used to detect user interrupts and also to check for stack
overflows. Interrupt checking should not be turned off casually.

(number-type primitive ...)
Numeric arguments and result of the specified primitives are
known to be of the given type (all primitives if none specified).
number-type can be: ‘generic ’, ‘fixnum ’, or ‘flonum ’.

Chapter 6: Scheme extensions 34

The default declarations used by the compiler are equivalent to:
(declare

(ieee-scheme)
(separate)
(inline)
(inlining-limit 300)
(constant-fold)
(lambda-lift)
(not standard-bindings)
(not extended-bindings)
(safe)
(interrupts-enabled)
(generic)

)

These declarations are compatible with the semantics of Scheme. Typically used
declarations that enhance performance, at the cost of violating the Scheme semantics,
are: (standard-bindings) , (block) , (not safe) and (fixnum) .

Chapter 7: Characters and strings 35

7 Characters and strings

Gambit supports the Unicode character encoding standard (ISO/IEC-10646-1). Scheme
characters can be any of the characters in the 16 bit subset of Unicode known as UCS-
2. Scheme strings can contain any character in UCS-2. Source code can also contain any
character in UCS-2. However, to read such source code properly gsi and gsc must be
told which character encoding to use for reading the source code (i.e. UTF-8, UCS-2, or
UCS-4). This can be done by specifying the runtime option ‘-:f ’ when gsi and gsc are
started.

7.1 Extensions to character procedures

[procedure](char->integer char)
[procedure](integer->char n)

The procedure char->integer returns the Unicode encoding of the character char.
The procedure integer->char returns the character whose Unicode encoding is
the exact integer n.
For example:

> (char- >integer # \ !)
33
> (integer- >char 65)
#\A
> (integer- >char (char- >integer # \ #x1234))
#\#x1234

[procedure](char=? char1 . . .)
[procedure](char<? char1 . . .)
[procedure](char>? char1 . . .)
[procedure](char<=? char1 . . .)
[procedure](char>=? char1 . . .)
[procedure](char-ci=? char1 . . .)
[procedure](char-ci<? char1 . . .)
[procedure](char-ci>? char1 . . .)
[procedure](char-ci<=? char1 . . .)
[procedure](char-ci>=? char1 . . .)

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of characters lst is sorted in nondecreasing order can be done
with the call (apply char<? lst) .

7.2 Extensions to string procedures

[procedure](string=? string1 . . .)
[procedure](string<? string1 . . .)
[procedure](string>? string1 . . .)
[procedure](string<=? string1 . . .)
[procedure](string>=? string1 . . .)
[procedure](string-ci=? string1 . . .)

Chapter 7: Characters and strings 36

[procedure](string-ci<? string1 . . .)
[procedure](string-ci>? string1 . . .)
[procedure](string-ci<=? string1 . . .)
[procedure](string-ci>=? string1 . . .)

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of strings lst is sorted in nondecreasing order can be done with
the call (apply string<? lst) .

Chapter 8: Numbers 37

8 Numbers

8.1 Extensions to numeric procedures

[procedure](= z1 . . .)
[procedure](< x1 . . .)
[procedure](> x1 . . .)
[procedure](<= x1 . . .)
[procedure](>= x1 . . .)

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of numbers lst is sorted in nondecreasing order can be done
with the call (apply < lst) .

8.2 IEEE floating point arithmetic

To better conform to IEEE floating point arithmetic the standard numeric tower is extended
with these special inexact reals:

+inf. positive infinity

-inf. negative infinity

+nan. “not a number”

-0. negative zero (‘0. ’ is the positive zero)

The infinities and “not a number” are reals (i.e. (real? +inf.) is #t) but are not
rational (i.e. (rational? +inf.) is #f).

Both zeros are numerically equal (i.e. (= -0. 0.) is #t) but are not equivalent (i.e.
(eqv? -0. 0.) and (equal? -0. 0.) are #f). All numerical comparisons with “not a
number”, including (= +nan. +nan.) , are #f .

8.3 Integer square root and nth root

[procedure](integer-sqrt n)
This procedure returns the integer part of the square root of the nonnegative exact
integer n.

For example:
> (integer-sqrt 123)
11

[procedure](integer-nth-root n1 n2)
This procedure returns the integer part of n1 raised to the power 1/n2, where n1 is
a nonnegative exact integer and n2 is a positive exact integer.

For example:
> (integer-nth-root 100 3)
4

Chapter 8: Numbers 38

8.4 Bitwise-operations on exact integers

The procedures defined in this section are compatible with the withdrawn “Integer Bitwise-
operation Library SRFI” (SRFI 33). Note that some of the procedures specified in SRFI
33 are not provided.

Most procedures in this section are specified in terms of the binary representation of exact
integers. The two’s complement representation is assumed where an integer is composed
of an infinite number of bits. The upper section of an integer (the most significant bits)
are either an infinite sequence of ones when the integer is negative, or they are an infinite
sequence of zeros when the integer is nonnegative.

[procedure](arithmetic-shift n1 n2)
This procedure returns n1 shifted to the left by n2 bits, that is (floor (* n1 (expt
2 n2))) . Both n1 and n2 must be exact integers.

For example:
> (arithmetic-shift 1000 7) ; n1=...0000001111101000
128000
> (arithmetic-shift 1000 -6) ; n1=...0000001111101000
15
> (arithmetic-shift -23 -3) ; n1=...1111111111101001
-3

[procedure](bitwise-merge n1 n2 n3)
This procedure returns an exact integer whose bits combine the bits from n2 and n3
depending on n1. The bit at index i of the result depends only on the bits at index i
in n1, n2 and n3: it is equal to the bit in n2 when the bit in n1 is 0 and it is equal
to the bit in n3 when the bit in n1 is 1. All arguments must be exact integers.

For example:
> (bitwise-merge -4 -11 10) ; ...11111100 ...11110101 ...00001010
9
> (bitwise-merge 12 -11 10) ; ...00001100 ...11110101 ...00001010
-7

[procedure](bitwise-and n . . .)
This procedure returns the bitwise “and” of the exact integers n. . . . The value -1 is
returned when there are no arguments.

For example:
> (bitwise-and 6 12) ; ...00000110 ...00001100
4
> (bitwise-and 6 -4) ; ...00000110 ...11111100
4
> (bitwise-and -6 -4) ; ...11111010 ...11111100
-8
> (bitwise-and)
-1

[procedure](bitwise-ior n . . .)
This procedure returns the bitwise “inclusive-or” of the exact integers n. . . . The
value 0 is returned when there are no arguments.

For example:

Chapter 8: Numbers 39

> (bitwise-ior 6 12) ; ...00000110 ...00001100
14
> (bitwise-ior 6 -4) ; ...00000110 ...11111100
-2
> (bitwise-ior -6 -4) ; ...11111010 ...11111100
-2
> (bitwise-ior)
0

[procedure](bitwise-xor n . . .)
This procedure returns the bitwise “exclusive-or” of the exact integers n. . . . The
value 0 is returned when there are no arguments.
For example:

> (bitwise-xor 6 12) ; ...00000110 ...00001100
10
> (bitwise-xor 6 -4) ; ...00000110 ...11111100
-6
> (bitwise-xor -6 -4) ; ...11111010 ...11111100
6
> (bitwise-xor)
0

[procedure](bitwise-not n)
This procedure returns the bitwise complement of the exact integer n.
For example:

> (bitwise-not 3) ; ...00000011
-4
> (bitwise-not -1) ; ...11111111
0

[procedure](bit-count n)
This procedure returns the bit count of the exact integer n. If n is nonnegative, the
bit count is the number of 1 bits in the two’s complement representation of n. If n is
negative, the bit count is the number of 0 bits in the two’s complement representation
of n.
For example:

> (bit-count 0) ; ...00000000
0
> (bit-count 1) ; ...00000001
1
> (bit-count 2) ; ...00000010
1
> (bit-count 3) ; ...00000011
2
> (bit-count 4) ; ...00000100
1
> (bit-count -23) ; ...11101001
3

[procedure](integer-length n)
This procedure returns the bit length of the exact integer n. If n is a positive integer
the bit length is one more than the index of the highest 1 bit (the least significant bit
is at index 0). If n is a negative integer the bit length is one more than the index of
the highest 0 bit. If n is zero, the bit length is 0.

Chapter 8: Numbers 40

For example:
> (integer-length 0) ; ...00000000
0
> (integer-length 1) ; ...00000001
1
> (integer-length 2) ; ...00000010
2
> (integer-length 3) ; ...00000011
2
> (integer-length 4) ; ...00000100
3
> (integer-length -23) ; ...11101001
5

[procedure](bit-set? n1 n2)
This procedure returns a boolean indicating if the bit at index n1 of n2 is set (i.e.
equal to 1) or not. Both n1 and n2 must be exact integers, and n1 must be nonneg-
ative.
For example:

> (map (lambda (i) (bit-set? i -23)) ; ...11101001
’(7 6 5 4 3 2 1 0))

(#t #t #t #f #t #f #f #t)

[procedure](any-bits-set? n1 n2)
This procedure returns a boolean indicating if the bitwise and of n1 and n2 is different
from zero or not. This procedure is implemented more efficiently than the naive
definition:

(define (any-bits-set? n1 n2) (not (zero? (bitwise-and n1 n2))))

For example:
> (any-bits-set? 5 10) ; ...00000101 ...00001010
#f
> (any-bits-set? -23 32) ; ...11101001 ...00100000
#t

[procedure](all-bits-set? n1 n2)
This procedure returns a boolean indicating if the bitwise and of n1 and n2 is equal to
n1 or not. This procedure is implemented more efficiently than the naive definition:

(define (all-bits-set? n1 n2) (= n1 (bitwise-and n1 n2)))

For example:
> (all-bits-set? 1 3) ; ...00000001 ...00000011
#f
> (all-bits-set? 7 3) ; ...00000111 ...00000011
#t

[procedure](first-set-bit n)
This procedure returns the bit index of the least significant bit of n equal to 1 (which
is also the number of 0 bits that are below the least significant 1 bit). This procedure
returns #f when n is zero.
For example:

> (first-set-bit 24) ; ...00011000
3
> (first-set-bit 0) ; ...00000000
#f

Chapter 8: Numbers 41

[procedure](extract-bit-field n1 n2 n3)
[procedure](test-bit-field? n1 n2 n3)
[procedure](clear-bit-field n1 n2 n3)
[procedure](replace-bit-field n1 n2 n3 n4)
[procedure](copy-bit-field n1 n2 n3 n4)

These procedures operate on a bit-field which is n1 bits wide starting at bit index n2.
All arguments must be exact integers and n1 and n2 must be nonnegative.
The procedure extract-bit-field returns the bit-field of n3 shifted to the right
so that the least significant bit of the bit-field is the least significant bit of the result.
The procedure test-bit-field? returns #t if any bit in the bit-field of n3 is equal
to 1, otherwise #f is returned.
The procedure clear-bit-field returns n3 with all bits in the bit-field replaced
with 0.
The procedure replace-bit-field returns n4 with the bit-field replaced with the
least-significant n1 bits of n3.
The procedure copy-bit-field returns n4 with the bit-field replaced with the
(same index and size) bit-field in n3.
For example:

> (extract-bit-field 5 2 -37) ; ...11011011
22
> (test-bit-field? 5 2 -37) ; ...11011011
#t
> (test-bit-field? 1 2 -37) ; ...11011011
#f
> (clear-bit-field 5 2 -37) ; ...11011011
-125
> (replace-bit-field 5 2 -6 -37) ; ...11111010 ...11011011
-21
> (copy-bit-field 5 2 -6 -37) ; ...11111010 ...11011011
-5

8.5 Pseudo random numbers

The procedures and variables defined in this section are compatible with the “Sources
of Random Bits SRFI” (SRFI 27). The implementation is based on Pierre L’Ecuyer’s
MRG32k3a pseudo random number generator. At the heart of SRFI 27’s interface is the
random source type which encapsulates the state of a pseudo random number generator.
The state of a random source object changes every time a pseudo random number is gen-
erated from this random source object.

[variable]default-random-source
The global variable default-random-source is bound to the random source ob-
ject which is used by the random-integer and random-real procedures.

[procedure](random-integer n)
This procedure returns a pseudo random exact integer in the range 0 to n-1. The
random source object in the global variable default-random-source is used to
generate this number. The parameter n must be a positive exact integer.
For example:

Chapter 8: Numbers 42

> (random-integer 100)
85
> (random-integer 100)
57
> (random-integer 100)
945290741458024889717065814815802026351

[procedure](random-real)
This procedure returns a pseudo random inexact real between, but not including, 0
and 1. The random source object in the global variable default-random-source
is used to generate this number.

For example:
> (random-real)
.45320029097275355
> (random-real)
.06978287583096841

[procedure](make-random-source)
This procedure returns a new random source object initialized to a predetermined
state (to initialize to a pseudo random state the procedure random-source-
randomize! should be called).

For example:
> (define rs (make-random-source))
> ((random-source-make-integers rs) 10000000)
8583952

[procedure](random-source? obj)
This procedure returns #t when obj is a random source object and #f otherwise.

For example:
> (random-source? default-random-source)
#t
> (random-source? 123)
#f

[procedure](random-source-state-ref random-source)
[procedure](random-source-state-set! random-source state)

The procedure random-source-state-ref extracts the state of the random
source object random-source and returns a vector containing the state.

The procedure random-source-state-set! restores the state of the random
source object random-source to state which must be a vector returned from a call to
the procedure random-source-state-ref .

For example:
> (define s (random-source-state-ref default-random-source))
> (random-integer 100)
7656325862303637797648462026194987439567
> (random-source-state-set! default-random-source s)
> (random-integer 100)
7656325862303637797648462026194987439567

[procedure](random-source-randomize! random-source)

Chapter 8: Numbers 43

[procedure](random-source-pseudo-randomize! random-source i j)
These procedures change the state of the random source object random-source. The
procedure random-source-randomize! sets the random source object to a state
that depends on the current time (which for typical uses can be considered to ran-
domly initialize the state). The procedure random-source-pseudo-randomize!
sets the random source object to a state that is determined only by the current state
and the nonnegative exact integers i and j. For both procedures the value returned
is unspecified.
For example:

> (define s (random-source-state-ref default-random-source))
> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767
> (random-source-state-set! default-random-source s)
> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767
> (random-source-state-set! default-random-source s)
> (random-source-randomize! default-random-source)
> (random-integer 100)
2542029895740728568283100141294446518128
> (random-source-state-set! default-random-source s)
> (random-source-randomize! default-random-source)
> (random-integer 100)
7451013261852787317503503162885726465845

[procedure](random-source-make-integers random-source)
This procedure returns a procedure for generating pseudo random exact integers using
the random source object random-source. The returned procedure accepts a single
parameter n, a positive exact integer, and returns a pseudo random exact integer in
the range 0 to n-1.
For example:

> (define rs (make-random-source))
> (define ri (random-source-make-integers rs))
> (ri 10000000)
8583952
> (ri 10000000)
2879793

[procedure](random-source-make-reals random-source)
This procedure returns a procedure for generating pseudo random inexact reals using
the random source object random-source. The returned procedure accepts no param-
eters and returns a pseudo random inexact real between, but not including, 0 and
1.
For example:

> (define rs (make-random-source))
> (define rr (random-source-make-reals rs))
> (rr)
.857402537562821
> (rr)
.2876463473845367

Chapter 9: Homogeneous vectors 44

9 Homogeneous vectors

Homogeneous vectors are vectors containing raw numbers of the same type (signed or
unsigned exact integers or inexact reals). There are 10 types of homogeneous vectors:
‘s8vector ’ (vector of exact integers in the range -2ˆ 7 to 2ˆ 7-1), ‘u8vector ’ (vector
of exact integers in the range 0 to 2ˆ 8-1), ‘s16vector ’ (vector of exact integers in the
range -2ˆ 15 to 2ˆ 15-1), ‘u16vector ’ (vector of exact integers in the range 0 to 2ˆ 16-1),
‘s32vector ’ (vector of exact integers in the range -2ˆ 31 to 2ˆ 31-1), ‘u32vector ’ (vector
of exact integers in the range 0 to 2ˆ 32-1), ‘s64vector ’ (vector of exact integers in the
range -2ˆ 63 to 2ˆ 63-1), ‘u64vector ’ (vector of exact integers in the range 0 to 2ˆ 64-1),
‘f32vector ’ (vector of 32 bit floating point numbers), and ‘f64vector ’ (vector of 64 bit
floating point numbers).

The lexical syntax of homogeneous vectors is specified in Section 15.8 [Homogeneous
vector syntax], page 124.

The procedures available for homogeneous vectors, listed below, are the analog of the
normal vector/string procedures for each of the homogeneous vector types.

[procedure](s8vector? obj)
[procedure](make-s8vector k [fill])
[procedure](s8vector exact-int8 . . .)
[procedure](s8vector-length s8vector)
[procedure](s8vector-ref s8vector k)
[procedure](s8vector-set! s8vector k exact-int8)
[procedure](s8vector->list s8vector)
[procedure](list->s8vector list-of-exact-int8)
[procedure](s8vector-fill! s8vector fill)
[procedure](s8vector-copy s8vector)
[procedure](s8vector-append s8vector . . .)
[procedure](subs8vector s8vector start end)

[procedure](u8vector? obj)
[procedure](make-u8vector k [fill])
[procedure](u8vector exact-int8 . . .)
[procedure](u8vector-length u8vector)
[procedure](u8vector-ref u8vector k)
[procedure](u8vector-set! u8vector k exact-int8)
[procedure](u8vector->list u8vector)
[procedure](list->u8vector list-of-exact-int8)
[procedure](u8vector-fill! u8vector fill)
[procedure](u8vector-copy u8vector)
[procedure](u8vector-append u8vector . . .)
[procedure](subu8vector u8vector start end)

[procedure](s16vector? obj)
[procedure](make-s16vector k [fill])
[procedure](s16vector exact-int16 . . .)
[procedure](s16vector-length s16vector)
[procedure](s16vector-ref s16vector k)

Chapter 9: Homogeneous vectors 45

[procedure](s16vector-set! s16vector k exact-int16)
[procedure](s16vector->list s16vector)
[procedure](list->s16vector list-of-exact-int16)
[procedure](s16vector-fill! s16vector fill)
[procedure](s16vector-copy s16vector)
[procedure](s16vector-append s16vector . . .)
[procedure](subs16vector s16vector start end)

[procedure](u16vector? obj)
[procedure](make-u16vector k [fill])
[procedure](u16vector exact-int16 . . .)
[procedure](u16vector-length u16vector)
[procedure](u16vector-ref u16vector k)
[procedure](u16vector-set! u16vector k exact-int16)
[procedure](u16vector->list u16vector)
[procedure](list->u16vector list-of-exact-int16)
[procedure](u16vector-fill! u16vector fill)
[procedure](u16vector-copy u16vector)
[procedure](u16vector-append u16vector . . .)
[procedure](subu16vector u16vector start end)

[procedure](s32vector? obj)
[procedure](make-s32vector k [fill])
[procedure](s32vector exact-int32 . . .)
[procedure](s32vector-length s32vector)
[procedure](s32vector-ref s32vector k)
[procedure](s32vector-set! s32vector k exact-int32)
[procedure](s32vector->list s32vector)
[procedure](list->s32vector list-of-exact-int32)
[procedure](s32vector-fill! s32vector fill)
[procedure](s32vector-copy s32vector)
[procedure](s32vector-append s32vector . . .)
[procedure](subs32vector s32vector start end)

[procedure](u32vector? obj)
[procedure](make-u32vector k [fill])
[procedure](u32vector exact-int32 . . .)
[procedure](u32vector-length u32vector)
[procedure](u32vector-ref u32vector k)
[procedure](u32vector-set! u32vector k exact-int32)
[procedure](u32vector->list u32vector)
[procedure](list->u32vector list-of-exact-int32)
[procedure](u32vector-fill! u32vector fill)
[procedure](u32vector-copy u32vector)
[procedure](u32vector-append u32vector . . .)
[procedure](subu32vector u32vector start end)

[procedure](s64vector? obj)
[procedure](make-s64vector k [fill])

Chapter 9: Homogeneous vectors 46

[procedure](s64vector exact-int64 . . .)
[procedure](s64vector-length s64vector)
[procedure](s64vector-ref s64vector k)
[procedure](s64vector-set! s64vector k exact-int64)
[procedure](s64vector->list s64vector)
[procedure](list->s64vector list-of-exact-int64)
[procedure](s64vector-fill! s64vector fill)
[procedure](s64vector-copy s64vector)
[procedure](s64vector-append s64vector . . .)
[procedure](subs64vector s64vector start end)

[procedure](u64vector? obj)
[procedure](make-u64vector k [fill])
[procedure](u64vector exact-int64 . . .)
[procedure](u64vector-length u64vector)
[procedure](u64vector-ref u64vector k)
[procedure](u64vector-set! u64vector k exact-int64)
[procedure](u64vector->list u64vector)
[procedure](list->u64vector list-of-exact-int64)
[procedure](u64vector-fill! u64vector fill)
[procedure](u64vector-copy u64vector)
[procedure](u64vector-append u64vector . . .)
[procedure](subu64vector u64vector start end)

[procedure](f32vector? obj)
[procedure](make-f32vector k [fill])
[procedure](f32vector inexact-real . . .)
[procedure](f32vector-length f32vector)
[procedure](f32vector-ref f32vector k)
[procedure](f32vector-set! f32vector k inexact-real)
[procedure](f32vector->list f32vector)
[procedure](list->f32vector list-of-inexact-real)
[procedure](f32vector-fill! f32vector fill)
[procedure](f32vector-copy f32vector)
[procedure](f32vector-append f32vector . . .)
[procedure](subf32vector f32vector start end)

[procedure](f64vector? obj)
[procedure](make-f64vector k [fill])
[procedure](f64vector inexact-real . . .)
[procedure](f64vector-length f64vector)
[procedure](f64vector-ref f64vector k)
[procedure](f64vector-set! f64vector k inexact-real)
[procedure](f64vector->list f64vector)
[procedure](list->f64vector list-of-inexact-real)
[procedure](f64vector-fill! f64vector fill)
[procedure](f64vector-copy f64vector)
[procedure](f64vector-append f64vector . . .)

Chapter 9: Homogeneous vectors 47

[procedure](subf64vector f64vector start end)
For example:

> (define v (u8vector 10 255 13))
> (u8vector-set! v 2 99)
> v
#u8(10 255 99)
> (u8vector-ref v 1)
255
> (u8vector- >list v)
(10 255 99)

Chapter 10: Records 48

10 Records

[special form](define-structure name field . . .)
Record data types similar to Pascal records and C struct types can be defined
using the define-structure special form. The identifier name specifies the name
of the new data type. The structure name is followed by k identifiers naming each
field of the record. The define-structure expands into a set of definitions of the
following procedures:
• ‘make- name’ – A k argument procedure which constructs a new record from the

value of its k fields.
• ‘name?’ – A procedure which tests if its single argument is of the given record

type.
• ‘name- field’ – For each field, a procedure taking as its single argument a value

of the given record type and returning the content of the corresponding field of
the record.

• ‘name- field-set! ’ – For each field, a two argument procedure taking as its first
argument a value of the given record type. The second argument gets assigned
to the corresponding field of the record and the void object is returned.

Record data types have a printed representation that includes the name of the type
and the name and value of each field. Record data types can not be read by the read
procedure.
For example:

> (define-structure point x y color)
> (define p (make-point 3 5 ’red))
> p
#<point #3 x: 3 y: 5 color: red>
> (point-x p)
3
> (point-color p)
red
> (point-color-set! p ’black)
> p
#<point #3 x: 3 y: 5 color: black>

Chapter 11: Threads 49

11 Threads

Gambit supports the execution of multiple Scheme threads. These threads are managed
entirely by Gambit’s runtime and are not related to the host operating system’s threads.
Gambit’s runtime does not currently take advantage of multiprocessors (i.e. at most one
thread is running).

11.1 Introduction

Multithreading is a paradigm that is well suited for building complex systems such as:
servers, GUIs, and high-level operating systems. Gambit’s thread system offers mecha-
nisms for creating new threads of execution and for synchronizing them. The thread system
also supports features which are useful in a real-time context, such as priorities, priority
inheritance and a time datatype (which is useful on its own and also for specifying synchro-
nization timeouts). Mechanisms to handle exceptions and some multithreading exception
datatypes are explained in this chapter because the handling of exceptions is closely tied to
the multithreading model.

The thread system provides the following data types:
• Thread (a virtual processor which shares object space with all other threads)
• Thread group (a collection of threads)
• Mutex (a mutual exclusion device, also known as a lock and binary semaphore)
• Condition variable (a set of blocked threads)
• Time (an absolute point on the time line)

Some multithreading exception datatypes are also specified, and a general mechanism
for handling exceptions.

11.2 Threads

A running thread is a thread that is currently executing. There can be more than one
running thread on a multiprocessor machine. A runnable thread is a thread that is ready to
execute or running. A thread is blocked if it is waiting for a mutex to become unlocked, an
I/O operation to become possible, the end of a “sleep” period, etc. A new thread is a thread
that has not yet become runnable. A new thread becomes runnable when it is started. A
terminated thread is a thread that can no longer become runnable (but deadlocked threads
are not considered terminated). The only valid transitions between the thread states are
from new to runnable, between runnable and blocked, and from any state to terminated as
indicated in the following diagram:

unblock
start <-------

NEW -------> RUNNABLE -------> BLOCKED
\ | block /

\ v /
+-----> TERMINATED <----+

Each thread has a base priority, which is a real number (where a higher numerical value
means a higher priority), a priority boost, which is a nonnegative real number represent-
ing the priority increase applied to a thread when it blocks, and a quantum, which is a
nonnegative real number representing a duration in seconds.

Chapter 11: Threads 50

Each thread has a specific field which can be used in an application specific way to
associate data with the thread (some thread systems call this “thread local storage”).

11.3 Mutexes

A mutex can be in one of four states: locked (either owned or not owned) and unlocked
(either abandoned or not abandoned).

An attempt to lock a mutex only succeeds if the mutex is in an unlocked state, otherwise
the current thread will wait. A mutex in the locked/owned state has an associated owner
thread, which by convention is the thread that is responsible for unlocking the mutex (this
case is typical of critical sections implemented as “lock mutex, perform operation, unlock
mutex”). A mutex in the locked/not-owned state is not linked to a particular thread.

A mutex becomes locked when a thread locks it using the ‘mutex-lock! ’ primitive.
A mutex becomes unlocked/abandoned when the owner of a locked/owned mutex termi-
nates. A mutex becomes unlocked/not-abandoned when a thread unlocks it using the
‘mutex-unlock! ’ primitive.

The mutex primitives do not implement recursive mutex semantics. An attempt to lock
a mutex that is locked implies that the current thread waits even if the mutex is owned by
the current thread (this can lead to a deadlock if no other thread unlocks the mutex).

Each mutex has a specific field which can be used in an application specific way to
associate data with the mutex.

11.4 Condition variables

A condition variable represents a set of blocked threads. These blocked threads are waiting
for a certain condition to become true. When a thread modifies some program state that
might make the condition true, the thread unblocks some number of threads (one or all
depending on the primitive used) so they can check if the condition is now true. This allows
complex forms of interthread synchronization to be expressed more conveniently than with
mutexes alone.

Each condition variable has a specific field which can be used in an application specific
way to associate data with the condition variable.

11.5 Fairness

In various situations the scheduler must select one thread from a set of threads (e.g. which
thread to run when a running thread blocks or expires its quantum, which thread to unblock
when a mutex becomes unlocked or a condition variable is signaled). The constraints on
the selection process determine the scheduler’s fairness. The selection depends on the order
in which threads become runnable or blocked and on the priority attached to the threads.

The definition of fairness requires the notion of time ordering, i.e. “event A occured
before event B”. For the purpose of establishing time ordering, the scheduler uses a clock
with a discrete, usually variable, resolution (a “tick”). Events occuring in a given tick can
be considered to be simultaneous (i.e. if event A occured before event B in real time, then
the scheduler will claim that event A occured before event B unless both events fall within
the same tick, in which case the scheduler arbitrarily chooses a time ordering).

Chapter 11: Threads 51

Each thread T has three priorities which affect fairness; the base priority, the boosted
priority, and the effective priority.

• The base priority is the value contained in T’s base priority field (which is set with
the ‘thread-base-priority-set! ’ primitive).

• T’s boosted flag field contains a boolean that affects T’s boosted priority. When the
boosted flag field is false, the boosted priority is equal to the base priority, otherwise
the boosted priority is equal to the base priority plus the value contained in T’s priority
boost field (which is set with the ‘thread-priority-boost-set! ’ primitive). The
boosted flag field is set to false when a thread is created, when its quantum expires,
and when thread-yield! is called. The boosted flag field is set to true when a thread
blocks. By carefully choosing the base priority and priority boost, relatively to the
other threads, it is possible to set up an interactive thread so that it has good I/O
response time without being a CPU hog when it performs long computations.

• The effective priority is equal to the maximum of T’s boosted priority and the effective
priority of all the threads that are blocked on a mutex owned by T. This priority
inheritance avoids priority inversion problems that would prevent a high priority thread
blocked at the entry of a critical section to progress because a low priority thread inside
the critical section is preempted for an arbitrary long time by a medium priority thread.

Let P(T) be the effective priority of thread T and let R(T) be the most recent time
when one of the following events occurred for thread T, thus making it runnable: T was
started by calling ‘thread-start! ’, T called ‘thread-yield! ’, T expired its quantum,
or T became unblocked. Let the relation NL(T1,T2), “T1 no later than T2”, be true if
P(T1)<P(T2) or P(T1)=P(T2) and R(T1)>R(T2), and false otherwise. The scheduler
will schedule the execution of threads in such a way that whenever there is at least one
runnable thread, 1) within a finite time at least one thread will be running, and 2) there
is never a pair of runnable threads T1 and T2 for which NL(T1,T2) is true and T1 is not
running and T2 is running.

A thread T expires its quantum when an amount of time equal to T’s quantum
has elapsed since T entered the running state and T did not block, terminate or call
‘thread-yield! ’. At that point T exits the running state to allow other threads to run.
A thread’s quantum is thus an indication of the rate of progress of the thread relative to
the other threads of the same priority. Moreover, the resolution of the timer measuring
the running time may cause a certain deviation from the quantum, so a thread’s quantum
should only be viewed as an approximation of the time it can run before yielding to
another thread.

Threads blocked on a given mutex or condition variable will unblock in an order which
is consistent with decreasing priority and increasing blocking time (i.e. the highest priority
thread unblocks first, and among equal priority threads the one that blocked first unblocks
first).

11.6 Memory coherency and lack of atomicity*************

Read and write operations on the store (such as reading and writing a variable, an element
of a vector or a string) are not required to be atomic. It is an error for a thread to write
a location in the store while some other thread reads or writes that same location. It

Chapter 11: Threads 52

is the responsibility of the application to avoid write/read and write/write races through
appropriate uses of the synchronization primitives.

Concurrent reads and writes to ports are allowed. It is the responsibility of the im-
plementation to serialize accesses to a given port using the appropriate synchronization
primitives.

11.7 Dynamic environments, continuations and
‘dynamic-wind ’

The " dynamic environment" is a structure which allows the system to find the value
returned by ‘current-input-port ’, ‘current-output-port ’, etc. The procedures
‘with-input-from-file ’, ‘with-output-to-file ’, etc extend the dynamic environ-
ment to produce a new dynamic environment which is in effect for the duration of the call to
the thunk passed as the last argument. Some Scheme systems generalize the dynamic envi-
ronment by providing procedures and special forms to define new " dynamic variables" and
bind them in the dynamic environment (e.g. ‘make-parameter ’ and ‘parameterize ’).

Each thread has its own dynamic environment. When a thread’s dynamic environment
is extended this does not affect the dynamic environment of other threads. When a thread
creates a continuation, the thread’s dynamic environment and the ‘dynamic-wind ’ stack
are saved within the continuation (an alternate but equivalent point of view is that the
‘dynamic-wind ’ stack is part of the dynamic environment). When this continuation is
invoked the required ‘dynamic-wind ’ before and after thunks are called and the saved dy-
namic environment is reinstated as the dynamic environment of the current thread. During
the call to each required ‘dynamic-wind ’ before and after thunk, the dynamic environ-
ment and the ‘dynamic-wind ’ stack in effect when the corresponding ‘dynamic-wind ’
was executed are reinstated. Note that this specification clearly defines the semantics of
calling ‘call-with-current-continuation ’ or invoking a continuation within a be-
fore or after thunk. The semantics are well defined even when a continuation created by
another thread is invoked. Below is an example exercising the subtleties of this semantics.

(with-output-to-file
"foo"
(lambda ()

(let ((k (call-with-current-continuation
(lambda (exit)

(with-output-to-file
"bar"
(lambda ()

(dynamic-wind
(lambda () (write ’(b1)))
(lambda ()

(let ((x (call-with-current-continuation
(lambda (cont) (exit cont)))))

(write ’(t1))
x))

(lambda () (write ’(a1))))))))))
(if k

(dynamic-wind
(lambda () (write ’(b2)))
(lambda ()

(with-output-to-file
"baz"

Chapter 11: Threads 53

(lambda ()
(write ’(t2))
; go back inside (with-output-to-file "bar" ...)
(k #f))))

(lambda () (write ’(a2))))))))

In an implementation of Scheme where ‘with-output-to-file ’ only closes the port it
opened when the thunk returns normally, then the following actions will occur: (b1)(a1)
is written to " bar" , (b2) is written to " foo" , (t2) is written to " baz" , (a2) is written
to " foo" , and (b1)(t1)(a1) is written to " bar" .

When the scheduler stops the execution of a running thread T1 (whether because it
blocked, expired its quantum, was terminated, etc) and then resumes the execution of
a thread T2, there is in a sense a transfer of control between T1’s current continuation
and the continuation of T2. This transfer of control by the scheduler does not cause any
‘dynamic-wind ’ before and after thunks to be called. It is only when a thread itself
transfers control to a continuation that ‘dynamic-wind ’ before and after thunks are called.

11.8 Time objects and timeouts

A time object represents a point on the time line. Its resolution is implementation dependent
(implementations are encouraged to implement at least millisecond resolution so that precise
timing is possible). Using time->seconds and seconds->time , a time object can be
converted to and from a real number which corresponds to the number of seconds from a
reference point on the time line. The reference point is implementation dependent and does
not change for a given execution of the program (e.g. the reference point could be the time
at which the program started).

All synchronization primitives which take a timeout parameter accept three types of
values as a timeout, with the following meaning:
• a time object represents an absolute point in time
• an exact or inexact real number represents a relative time in seconds from the moment

the primitive was called
• ‘#f ’ means that there is no timeout

When a timeout denotes the current time or a time in the past, the synchronization
primitive claims that the timeout has been reached only after the other synchronization
conditions have been checked. Moreover the thread remains running (it does not enter the
blocked state). For example, (mutex-lock! m 0) will lock mutex mand return ‘#t ’ if m
is currently unlocked, otherwise ‘#f ’ is returned because the timeout is reached.

11.9 Primitives and exceptions

When one of the primitives defined in this SRFI raises an exception defined in this
SRFI, the exception-handler is called with the same continuation as the primitive
(i.e. it is a tail call to the exception-handler). This requirement avoids having to use
‘call-with-current-continuation ’ to get the same effect in some situations.

11.10 Primordial thread

The execution of a program is initially under the control of a single thread known as the
" primordial thread" . The primordial thread has an unspecified base priority, priority boost,

Chapter 11: Threads 54

boosted flag, quantum, name, specific field, dynamic environment, ‘dynamic-wind ’ stack,
and exception-handler. All threads are terminated when the primordial thread terminates
(normally or not).

11.11 Procedures

[procedure](current-thread)
Returns the current thread. For example:

> (current-thread)
#<thread #1 primordial>
> (eq? (current-thread) (current-thread))
#t

[procedure](thread? obj)
Returns ‘#t ’ if obj is a thread, otherwise returns ‘#f ’. If any of the predicates listed
in Section 3.2 of the R5RS is true of obj , then thread? is false of obj .
For example:

> (thread? (current-thread))
#t
> (thread? ’foo)
#f

[procedure](make-thread thunk [name [thread-group]])
Returns a new thread. This thread is not automatically made runnable (the procedure
thread-start! must be used for this). A thread has the following fields: base pri-
ority, priority boost, boosted flag, quantum, name, specific, end-result, end-exception,
and a list of locked/owned mutexes it owns. The thread’s execution consists of a call
to thunk with the " initial continuation" . This continuation causes the (then) current
thread to store the result in its end-result field, abandon all mutexes it owns, and
finally terminate. The ‘dynamic-wind ’ stack of the initial continuation is empty.
The optional name is an arbitrary Scheme object which identifies the thread (use-
ful for debugging); it defaults to an unspecified value. The specific field is set to
an unspecified value. The optional thread-group indicates which thread group
this thread belongs to; it defaults to the thread group of the current thread. The
base priority, priority boost, and quantum of the thread are set to the same value
as the current thread and the boosted flag is set to false. The thread inherits the
dynamic environment from the current thread. Moreover, in this dynamic environ-
ment the exception-handler is bound to the " initial exception-handler" which is a
unary procedure which causes the (then) current thread to store in its end-exception
field an " uncaught exception" object whose " reason" is the argument of the handler,
abandon all mutexes it owns, and finally terminate.
For example:

> (make-thread (lambda () (write ’hello)))
#<thread #2>
> (make-thread (lambda () (write ’world)) ’a-name)
#<thread #3 a-name>

[procedure](thread-name thread)
Returns the name of the thread .
For example:

Chapter 11: Threads 55

> (thread-name (make-thread (lambda () #f) ’foo))
foo

[procedure](thread-specific thread)
Returns the content of the thread ’s specific field.

[procedure](thread-specific-set! thread obj)
Stores obj into the thread ’s specific field. thread-specific-set! returns an
unspecified value.
For example:

> (thread-specific-set! (current-thread) " hello ")
> (thread-specific (current-thread))
"hello"

[procedure](thread-base-priority thread)
Returns a real number which corresponds to the base priority of the thread .

[procedure](thread-base-priority-set! thread priority)
Changes the base priority of the thread to priority . The priority must be a
real number. thread-base-priority-set! returns an unspecified value.
For example:

> (thread-base-priority-set! (current-thread) 12.3)
> (thread-base-priority (current-thread))
12.3

[procedure](thread-priority-boost thread)
Returns a real number which corresponds to the priority boost of the thread .

[procedure](thread-priority-boost-set! thread priority-boost)
Changes the priority boost of the thread to priority-boost . The priority-
boost must be a nonnegative real. thread-priority-boost-set! returns an
unspecified value.
For example:

> (thread-priority-boost-set! (current-thread) 2.5)
> (thread-priority-boost (current-thread))
2.5

[procedure](thread-quantum thread)
Returns a real number which corresponds to the quantum of the thread .

[procedure](thread-quantum-set! thread quantum)
Changes the quantum of the thread to quantum . The quantum must be a non-
negative real. A value of zero selects the smallest quantum supported by the imple-
mentation. thread-quantum-set! returns an unspecified value.
For example:

> (thread-quantum-set! (current-thread) 1.5)
> (thread-quantum (current-thread))
1.5
> (thread-quantum-set! (current-thread) 0)
> (thread-quantum (current-thread))
.01

Chapter 11: Threads 56

[procedure](thread-start! thread)
Makes thread runnable. The thread must be a new thread. thread-start!
returns the thread .
For example:

> (let ((t (thread-start! (make-thread (lambda () (write ’a))))))
(write ’b)
(thread-join! t))

ab> or ba>

NOTE: It is useful to separate thread creation and thread activation to avoid the
race condition that would occur if the created thread tries to examine a table in
which the current thread stores the created thread. See the last example of thread-
terminate! which contains mutually recursive threads.

[procedure](thread-yield!)
The current thread exits the running state as if its quantum had expired. thread-
yield! returns an unspecified value.
For example:

; a busy loop that avoids being too wasteful of the CPU

(let loop ()
(if (mutex-lock! m 0) ; try to lock m but don’t block

(begin
(display "locked mutex m")
(mutex-unlock! m))

(begin
(do-something-else)
(thread-yield!) ; relinquish rest of quantum
(loop))))

[procedure](thread-sleep! timeout)
The current thread waits until the timeout is reached. This blocks the thread only
if timeout represents a point in the future. It is an error for timeout to be ‘#f ’.
thread-sleep! returns an unspecified value.
For example:

; a clock with a gradual drift:

(let loop ((x 1))
(thread-sleep! 1)
(write x)
(loop (+ x 1)))

; a clock with no drift:

(let ((start (time->seconds (current-time)))
(let loop ((x 1))

(thread-sleep! (seconds->time (+ x start)))
(write x)
(loop (+ x 1))))

[procedure](thread-terminate! thread)
Causes an abnormal termination of the thread . If the thread is not already termi-
nated, all mutexes owned by the thread become unlocked/abandoned and a " ter-
minated thread exception" object is stored in the thread ’s end-exception field. If

Chapter 11: Threads 57

thread is the current thread, thread-terminate! does not return. Otherwise
thread-terminate! returns an unspecified value; the termination of the thread
will occur before thread-terminate! returns. at some point between the calling
of thread-terminate! and a finite time in the future (an explicit thread synchro-
nization is needed to detect termination, see thread-join!).
For example:

(thread-terminate! (current-thread)) ==> does not return

(define (amb thunk1 thunk2)
(let ((result #f)

(result-mutex (make-mutex))
(done-mutex (make-mutex)))

(letrec ((child1
(make-thread

(lambda ()
(let ((x (thunk1)))

(mutex-lock! result-mutex #f #f)
(set! result x)
(thread-terminate! child2)
(mutex-unlock! done-mutex)))))

(child2
(make-thread

(lambda ()
(let ((x (thunk2)))

(mutex-lock! result-mutex #f #f)
(set! result x)
(thread-terminate! child1)
(mutex-unlock! done-mutex))))))

(mutex-lock! done-mutex #f #f)
(thread-start! child1)
(thread-start! child2)
(mutex-lock! done-mutex #f #f)
result)))

NOTE: This operation must be used carefully because it terminates a thread abruptly
and it is impossible for that thread to perform any kind of cleanup. This may be a
problem if the thread is in the middle of a critical section where some structure
has been put in an inconsistent state. However, another thread attempting to enter
this critical section will raise an " abandoned mutex exception" because the mutex
is unlocked/abandoned. This helps avoid observing an inconsistent state. Clean
termination can be obtained by polling, as shown in the example below.
For example:

(define (spawn thunk)
(let ((t (make-thread thunk)))

(thread-specific-set! t #t)
(thread-start! t)
t))

(define (stop! thread)
(thread-specific-set! thread #f)
(thread-join! thread))

(define (keep-going?)
(thread-specific (current-thread)))

Chapter 11: Threads 58

(define count!
(let ((m (make-mutex))

(i 0))
(lambda ()

(mutex-lock! m)
(let ((x (+ i 1)))

(set! i x)
(mutex-unlock! m)
x))))

(define (increment-forever!)
(let loop () (count!) (if (keep-going?) (loop))))

(let ((t1 (spawn increment-forever!))
(t2 (spawn increment-forever!)))

(thread-sleep! 1)
(stop! t1)
(stop! t2)
(count!)) ==> 377290

[procedure](thread-join! thread [timeout [timeout-val]])
The current thread waits until the thread terminates (normally or not) or until
the timeout is reached if timeout is supplied. If the timeout is reached, thread-
join! returns timeout-val if it is supplied, otherwise a " join timeout exception"
is raised. If the thread terminated normally, the content of the end-result field is
returned, otherwise the content of the end-exception field is raised.

For example:
(let ((t (thread-start! (make-thread (lambda () (expt 2 100))))))

(do-something-else)
(thread-join! t)) ==> 1267650600228229401496703205376

(let ((t (thread-start! (make-thread (lambda () (raise 123))))))
(do-something-else)
(with-exception-handler

(lambda (exc)
(if (uncaught-exception? exc)

(* 10 (uncaught-exception-reason exc))
99999))

(lambda ()
(+ 1 (thread-join! t))))) ==> 1231

(define thread-alive?
(let ((unique (list ’unique)))

(lambda (thread)
; Note: this procedure raises an exception if
; the thread terminated abnormally.
(eq? (thread-join! thread 0 unique) unique))))

(define (wait-for-termination! thread)
(let ((eh (current-exception-handler)))

(with-exception-handler
(lambda (exc)

(if (not (or (terminated-thread-exception? exc)
(uncaught-exception? exc)))

(eh exc))) ; unexpected exceptions are handled by eh
(lambda ()

Chapter 11: Threads 59

; The following call to thread-join! will wait until the
; thread terminates. If the thread terminated normally
; thread-join! will return normally. If the thread
; terminated abnormally then one of these two exceptions
; is raised by thread-join!:
; - terminated thread exception
; - uncaught exception
(thread-join! thread)
#f)))) ; ignore result of thread-join!

[procedure](mutex? obj)
Returns ‘#t ’ if obj is a mutex, otherwise returns ‘#f ’. If any of the predicates listed
in Section 3.2 of the R5RS is true of obj , then mutex? is false of obj .
For example:

> (mutex? (make-mutex))
#t
> (mutex? ’foo)
#f

[procedure](make-mutex [name])
Returns a new mutex in the unlocked/not-abandoned state. The optional name is an
arbitrary Scheme object which identifies the mutex (useful for debugging); it defaults
to an unspecified value. The mutex’s specific field is set to an unspecified value.
For example:

> (make-mutex)
#<mutex #2>
> (make-mutex ’foo)
#<mutex #3 foo>

[procedure](mutex-name mutex)
Returns the name of the mutex . For example:

> (mutex-name (make-mutex ’foo))
foo

[procedure](mutex-specific mutex)
Returns the content of the mutex ’s specific field.

[procedure](mutex-specific-set! mutex obj)
Stores obj into the mutex ’s specific field. mutex-specific-set! returns an
unspecified value.
For example:

(define m (make-mutex))
(mutex-specific-set! m "hello") ==> unspecified
(mutex-specific m) ==> "hello"

(define (mutex-lock-recursively! mutex)
(if (eq? (mutex-state mutex) (current-thread))

(let ((n (mutex-specific mutex)))
(mutex-specific-set! mutex (+ n 1)))

(begin
(mutex-lock! mutex)
(mutex-specific-set! mutex 0))))

Chapter 11: Threads 60

(define (mutex-unlock-recursively! mutex)
(let ((n (mutex-specific mutex)))

(if (= n 0)
(mutex-unlock! mutex)
(mutex-specific-set! mutex (- n 1)))))

[procedure](mutex-state mutex)
Returns information about the state of the mutex . The possible results are:
• thread T: the mutex is in the locked/owned state and thread T is the owner

of the mutex

• symbol not-owned : the mutex is in the locked/not-owned state
• symbol abandoned : the mutex is in the unlocked/abandoned state
• symbol not-abandoned : the mutex is in the unlocked/not-abandoned state

For example:
(mutex-state (make-mutex)) ==> not-abandoned

(define (thread-alive? thread)
(let ((mutex (make-mutex)))

(mutex-lock! mutex #f thread)
(let ((state (mutex-state mutex)))

(mutex-unlock! mutex) ; avoid space leak
(eq? state thread))))

[procedure](mutex-lock! mutex [timeout [thread]])
If the mutex is currently locked, the current thread waits until the mutex is unlocked,
or until the timeout is reached if timeout is supplied. If the timeout is reached,
mutex-lock! returns ‘#f ’. Otherwise, the state of the mutex is changed as follows:
• if thread is ‘#f ’ the mutex becomes locked/not-owned,
• otherwise, let T be thread (or the current thread if thread is not supplied),

• if T is terminated the mutex becomes unlocked/abandoned,
• otherwise mutex becomes locked/owned with T as the owner.

After changing the state of the mutex , an " abandoned mutex exception" is raised
if the mutex was unlocked/abandoned before the state change, otherwise mutex-
lock! returns ‘#t ’. It is not an error if the mutex is owned by the current thread
(but the current thread will have to wait).
For example:

; an implementation of a mailbox object of depth one; this
; implementation does not behave well in the presence of forced
; thread terminations using thread-terminate! (deadlock can occur
; if a thread is terminated in the middle of a put! or get! operation)

(define (make-empty-mailbox)
(let ((put-mutex (make-mutex)) ; allow put! operation

(get-mutex (make-mutex))
(cell #f))

(define (put! obj)
(mutex-lock! put-mutex #f #f) ; prevent put! operation
(set! cell obj)

Chapter 11: Threads 61

(mutex-unlock! get-mutex)) ; allow get! operation

(define (get!)
(mutex-lock! get-mutex #f #f) ; wait until object in mailbox
(let ((result cell))

(set! cell #f) ; prevent space leaks
(mutex-unlock! put-mutex) ; allow put! operation
result))

(mutex-lock! get-mutex #f #f) ; prevent get! operation

(lambda (msg)
(case msg

((put!) put!)
((get!) get!)
(else (error "unknown message"))))))

(define (mailbox-put! m obj) ((m ’put!) obj))
(define (mailbox-get! m) ((m ’get!)))

; an alternate implementation of thread-sleep!

(define (sleep! timeout)
(let ((m (make-mutex)))

(mutex-lock! m #f #f)
(mutex-lock! m timeout #f)))

; a procedure that waits for one of two mutexes to unlock

(define (lock-one-of! mutex1 mutex2)
; this procedure assumes that neither mutex1 or mutex2
; are owned by the current thread
(let ((ct (current-thread))

(done-mutex (make-mutex)))
(mutex-lock! done-mutex #f #f)
(let ((t1 (thread-start!

(make-thread
(lambda ()

(mutex-lock! mutex1 #f ct)
(mutex-unlock! done-mutex)))))

(t2 (thread-start!
(make-thread

(lambda ()
(mutex-lock! mutex2 #f ct)
(mutex-unlock! done-mutex))))))

(mutex-lock! done-mutex #f #f)
(thread-terminate! t1)
(thread-terminate! t2)
(if (eq? (mutex-state mutex1) ct)

(begin
(if (eq? (mutex-state mutex2) ct)

(mutex-unlock! mutex2)) ; don’t lock both
mutex1)

mutex2))))

[procedure](mutex-unlock! mutex [condition-variable [timeout]])
Unlocks the mutex by making it unlocked/not-abandoned. It is not an error
to unlock an unlocked mutex and a mutex that is owned by any thread. If

Chapter 11: Threads 62

condition-variable is supplied, the current thread is blocked and added to
the condition-variable before unlocking mutex ; the thread can unblock at
any time but no later than when an appropriate call to condition-variable-
signal! or condition-variable-broadcast! is performed (see below), and
no later than the timeout (if timeout is supplied). If there are threads waiting to
lock this mutex , the scheduler selects a thread, the mutex becomes locked/owned
or locked/not-owned, and the thread is unblocked. mutex-unlock! returns ‘#f ’
when the timeout is reached, otherwise it returns ‘#t ’.

NOTE: The reason the thread can unblock at any time (when condition-
variable is supplied) is to allow extending this SRFI with primitives that force a
specific blocked thread to become runnable. For example a primitive to interrupt
a thread so that it performs a certain operation, whether the thread is blocked or
not, may be useful to handle the case where the scheduler has detected a serious
problem (such as a deadlock) and it must unblock one of the threads (such as
the primordial thread) so that it can perform some appropriate action. After a
thread blocked on a condition-variable has handled such an interrupt it would be
wrong for the scheduler to return the thread to the blocked state, because any
calls to condition-variable-broadcast! during the interrupt will have gone
unnoticed. It is necessary for the thread to remain runnable and return from the call
to mutex-unlock! with a result of ‘#t ’.

NOTE: mutex-unlock! is related to the " wait" operation on condition variables
available in other thread systems. The main difference is that " wait" automatically
locks mutex just after the thread is unblocked. This operation is not performed by
mutex-unlock! and so must be done by an explicit call to mutex-lock! . This has
the advantages that a different timeout and exception-handler can be specified on the
mutex-lock! and mutex-unlock! and the location of all the mutex operations is
clearly apparent. A typical use with a condition variable is:

For example:
(let loop ()

(mutex-lock! m)
(if (condition-is-true?)

(begin
(do-something-when-condition-is-true)
(mutex-unlock! m))

(begin
(mutex-unlock! m cv)
(loop))))

[procedure](condition-variable? obj)
Returns ‘#t ’ if obj is a condition variable, otherwise returns ‘#f ’. If any of the pred-
icates listed in Section 3.2 of the R5RS is true of obj , then condition-variable?
is false of obj .

For example:
> (condition-variable? (make-condition-variable))
#t
> (condition-variable? ’foo)
#f

Chapter 11: Threads 63

[procedure](make-condition-variable [name])
Returns a new empty condition variable. The optional name is an arbitrary Scheme
object which identifies the condition variable (useful for debugging); it defaults to an
unspecified value. The condition variable’s specific field is set to an unspecified value.
For example:

> (make-condition-variable)
an empty condition variable

[procedure](condition-variable-name condition-variable)
Returns the name of the condition-variable . For example:

> (condition-variable-name (make-condition-variable ’foo))
foo

[procedure](condition-variable-specific condition-variable)
Returns the content of the condition-variable ’s specific field.

[procedure](condition-variable-specific-set!
condition-variable obj)

Stores obj into the condition-variable ’s specific field. condition-
variable-specific-set! returns an unspecified value.
For example:

(define cv (make-condition-variable))
(condition-variable-specific-set! cv "hello") ==> unspeci-

fied
(condition-variable-specific cv) ==> "hello"

[procedure](condition-variable-signal! condition-variable)
If there are threads blocked on the condition-variable , the scheduler selects a
thread and unblocks it. condition-variable-signal! returns an unspecified
value.
For example:

; an implementation of a mailbox object of depth one; this
; implementation behaves gracefully when threads are forcibly
; terminated using thread-terminate! (the "abandoned mutex"
; exception will be raised when a put! or get! operation is attempted
; after a thread is terminated in the middle of a put! or get!
; operation)

(define (make-empty-mailbox)
(let ((mutex (make-mutex))

(put-condvar (make-condition-variable))
(get-condvar (make-condition-variable))
(full? #f)
(cell #f))

(define (put! obj)
(mutex-lock! mutex)
(if full?

(begin
(mutex-unlock! mutex put-condvar)
(put! obj))

(begin
(set! cell obj)

Chapter 11: Threads 64

(set! full? #t)
(condition-variable-signal! get-condvar)
(mutex-unlock! mutex))))

(define (get!)
(mutex-lock! mutex)
(if (not full?)

(begin
(mutex-unlock! mutex get-condvar)
(get!))

(let ((result cell))
(set! cell #f) ; avoid space leaks
(set! full? #f)
(condition-variable-signal! put-condvar)
(mutex-unlock! mutex))))

(lambda (msg)
(case msg

((put!) put!)
((get!) get!)
(else (error "unknown message"))))))

(define (mailbox-put! m obj) ((m ’put!) obj))
(define (mailbox-get! m) ((m ’get!)))

[procedure](condition-variable-broadcast! condition-variable)
Unblocks all the threads blocked on the condition-variable . condition-
variable-broadcast! returns an unspecified value.

For example:
(define (make-semaphore n)

(vector n (make-mutex) (make-condition-variable)))

(define (semaphore-wait! sema)
(mutex-lock! (vector-ref sema 1))
(let ((n (vector-ref sema 0)))

(if (> n 0)
(begin

(vector-set! sema 0 (- n 1))
(mutex-unlock! (vector-ref sema 1)))

(begin
(mutex-unlock! (vector-ref sema 1) (vector-ref sema 2))
(semaphore-wait! sema))))

(define (semaphore-signal-by! sema increment)
(mutex-lock! (vector-ref sema 1))
(let ((n (+ (vector-ref sema 0) increment)))

(vector-set! sema 0 n)
(if (> n 0)

(condition-variable-broadcast! (vector-ref sema 2)))
(mutex-unlock! (vector-ref sema 1))))

[procedure](current-time)
Returns the time object corresponding to the current time. For example:

> (current-time)
#<time #2>

Chapter 11: Threads 65

[procedure](time? obj)
Returns ‘#t ’ if obj is a time object, otherwise returns ‘#f ’. If any of the predicates
listed in Section 3.2 of the R5RS is true of obj , then time? is false of obj .
For example:

> (time? (current-time))
#t
> (time? 123)
#f

[procedure](time->seconds time)
Converts the time object time into an exact or inexact real number representing the
number of seconds elapsed since some implementation dependent reference point.
For example:

> (time- >seconds (current-time))
955039784.928075

[procedure](seconds->time x)
Converts into a time object the exact or inexact real number x representing the
number of seconds elapsed since some implementation dependent reference point.
For example:

> (seconds- >time (+ 10 (time- >seconds (current-time))
a time object representing 10 seconds in the future

Chapter 12: Exceptions 66

12 Exceptions

12.1 Exception-handling

Gambit’s exception-handling model is inspired from the withdrawn “Exception Handling
SRFI” (SRFI-12), the “Multithreading support SRFI” (SRFI-18), and the “Exception Han-
dling for Programs SRFI” (SRFI-34). The two fundamental operations are the dynamic
binding of an exception handler (i.e. the procedure with-exception-handler) and the
invocation of the exception handler (i.e. the procedure raise).

All predefined procedures which check for errors (including type errors, memory allo-
cation errors, host operating-system errors, etc) report these errors using the exception-
handling system (i.e. they “raise” an exception that can be handled in a user-defined
exception handler). When an exception is raised and the exception is not handled by a
user-defined exception handler, the predefined exception handler will display an error mes-
sage (if the primordial thread raised the exception) or the thread will silently terminate
with no error message (if it is not the primordial thread that raised the exception). This
default behavior can be changed through the ‘-:d ’ runtime option (see Chapter 4 [Runtime
options], page 17).

Predefined procedures normally raise exceptions by performing a tail-call to the exception
handler (the exceptions are “complex” procedures such as eval , compile-file , read ,
write , etc). This means that the continuation of the exception handler and of the REPL
that may be started due to this is normally the continuation of the predefined procedure
that raised the exception. By exiting the REPL with the ,(c expression) command
it is thus possible to resume the program as though the call to the predefined procedure
returned the value of expression. For example:

> (define (f x) (+ (car x) 1))
> (f 2) ; typo... we meant to say (f ’(2))
*** ERROR IN f, (console)@1.18 -- (Argument 1) PAIR expected
(car 2)
1> ,(c 2)
3

[procedure](current-exception-handler [new-exception-handler])
The parameter object current-exception-handler is bound to the current
exception-handler. Calling this procedure with no argument returns the current
exception-handler and calling this procedure with one argument sets the current
exception-handler to new-exception-handler.

For example:
> (current-exception-handler)
#<procedure #2 primordial-exception-handler>
> (current-exception-handler (lambda (exc) (pp exc) 999))
> (/ 1 0)
#<divide-by-zero-exception #3>
999

[procedure](with-exception-handler handler thunk)
Returns the result(s) of calling thunk with no arguments. The handler, which must be
a procedure, is installed as the current exception-handler in the dynamic environment

Chapter 12: Exceptions 67

in effect during the call to thunk. Note that the dynamic environment in effect during
the call to handler has handler as the exception-handler. Consequently, an exception
raised during the call to handler may lead to an infinite loop.
For example:

> (with-exception-handler
(lambda (e) (write e) 5)
(lambda () (+ 1 (* 2 3) 4)))

11
> (with-exception-handler

(lambda (e) (write e) 5)
(lambda () (+ 1 (* ’foo 3) 4)))

#<type-exception #2>10
> (with-exception-handler

(lambda (e) (write e 9))
(lambda () (+ 1 (* ’foo 3) 4)))

infinite loop

[procedure](with-exception-catcher handler thunk)
Returns the result(s) of calling thunk with no arguments. A new exception-handler is
installed as the current exception-handler in the dynamic environment in effect during
the call to thunk. This new exception-handler will call the handler, which must be a
procedure, with the exception object as an argument and with the same continuation
as the call to with-exception-catcher . This implies that the dynamic environ-
ment in effect during the call to handler is the same as the one in effect at the call to
with-exception-catcher . Consequently, an exception raised during the call to
handler will not lead to an infinite loop.
For example:

> (with-exception-catcher
(lambda (e) (write e) 5)
(lambda () (+ 1 (* 2 3) 4)))

11
> (with-exception-catcher

(lambda (e) (write e) 5)
(lambda () (+ 1 (* ’foo 3) 4)))

#<type-exception #2>10
> (with-exception-catcher

(lambda (e) (write e 9))
(lambda () (+ 1 (* ’foo 3) 4)))

*** ERROR IN (console)@7.1 -- (Argument 2) OUTPUT PORT expected
(write ’#<type-exception #3> 9)
1>

[procedure](raise obj)
This procedure tail-calls the current exception-handler with obj as the sole argument.
If the exception-handler returns, the continuation of the call to raise is invoked.
For example:

> (with-exception-handler
(lambda (exc)

(pp exc)
100)

(lambda ()
(+ 1 (raise " hello "))))

"hello"
101

Chapter 12: Exceptions 68

[procedure](abort obj)
[procedure](noncontinuable-exception? obj)
[procedure](noncontinuable-exception-reason exc)

The procedure abort calls the current exception-handler with obj as the sole argu-
ment. If the exception-handler returns, the procedure abort will be tail-called with
a noncontinuable-exception object, whose reason field is obj, as sole argument.
Noncontinuable-exception objects are raised by the abort procedure when the
exception-handler returns. The parameter exc must be a noncontinuable-exception
object.
The procedure noncontinuable-exception? returns #t when obj is a
noncontinuable-exception object and #f otherwise.
The procedure noncontinuable-exception-reason returns the argument of
the call to abort that raised exc.
For example:

> (call-with-current-continuation
(lambda (k)

(with-exception-handler
(lambda (exc)

(pp exc)
(if (noncontinuable-exception? exc)

(k (list (noncontinuable-exception-reason exc)))
100))

(lambda ()
(+ 1 (abort " hello "))))))

"hello"
#<noncontinuable-exception #2>
("hello")

12.2 Exception objects related to memory management

[procedure](heap-overflow-exception? obj)
Heap-overflow-exception objects are raised when the allocation of an object would
cause the heap to use more memory space than is available.
The procedure heap-overflow-exception? returns #t when obj is a
heap-overflow-exception object and #f otherwise.
For example:

> (define (handler exc)
(if (heap-overflow-exception? exc)

exc
’not-heap-overflow-exception))

> (with-exception-catcher
handler
(lambda ()

(define (f x) (f (cons 1 x)))
(f ’())))

#<heap-overflow-exception #2>

[procedure](stack-overflow-exception? obj)
Stack-overflow-exception objects are raised when the allocation of a continuation
frame would cause the heap to use more memory space than is available.

Chapter 12: Exceptions 69

The procedure stack-overflow-exception? returns #t when obj is a stack-
overflow-exception object and #f otherwise.
For example:

> (define (handler exc)
(if (stack-overflow-exception? exc)

exc
’not-stack-overflow-exception))

> (with-exception-catcher
handler
(lambda ()

(define (f) (+ 1 (f)))
(f)))

#<stack-overflow-exception #2>

12.3 Exception objects related to the host environment

[procedure](os-exception? obj)
[procedure](os-exception-procedure exc)
[procedure](os-exception-arguments exc)
[procedure](os-exception-code exc)
[procedure](os-exception-message exc)

Os-exception objects are raised by procedures which access the host operating-
system’s services when the requested operation fails. The parameter exc must be a
os-exception object.
The procedure os-exception? returns #t when obj is a os-exception object and
#f otherwise.
The procedure os-exception-procedure returns the procedure that raised exc.
The procedure os-exception-arguments returns the list of arguments of the
procedure that raised exc.
The procedure os-exception-code returns an exact integer error code that can
be converted to a string by the err-code->string procedure. Note that the error
code is operating-system dependent.
The procedure os-exception-message returns #f or a string giving details of the
exception in a human-readable form.
For example:

> (define (handler exc)
(if (os-exception? exc)

(list (os-exception-procedure exc)
(os-exception-arguments exc)
(err-code- >string (os-exception-code exc))
(os-exception-message exc))

’not-os-exception))
> (with-exception-catcher

handler
(lambda () (host-info " x.y.z ")))

(#<procedure #2 host-info> ("x.y.z") "Unknown host" #f)

[procedure](no-such-file-or-directory-exception? obj)
[procedure](no-such-file-or-directory-exception-procedure

exc)

Chapter 12: Exceptions 70

[procedure](no-such-file-or-directory-exception-arguments
exc)

No-such-file-or-directory-exception objects are raised by procedures which access the
filesystem (such as open-input-file and directory-files) when the path
specified can’t be found on the filesystem. The parameter exc must be a no-such-file-
or-directory-exception object.
The procedure no-such-file-or-directory-exception? returns #t when
obj is a no-such-file-or-directory-exception object and #f otherwise.
The procedure no-such-file-or-directory-exception-procedure returns
the procedure that raised exc.
The procedure no-such-file-or-directory-exception-arguments returns
the list of arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (no-such-file-or-directory-exception? exc)

(list (no-such-file-or-directory-exception-procedure exc)
(no-such-file-or-directory-exception-arguments exc))

’not-no-such-file-or-directory-exception))
> (with-exception-catcher

handler
(lambda () (with-input-from-file " nofile " read)))

(#<procedure #2 with-input-from-file> ("nofile" #<procedure #3 read>))

[procedure](unbound-os-environment-variable-exception? obj)
[procedure](unbound-os-environment-variable-exception-

procedure
exc)

[procedure](unbound-os-environment-variable-exception-
arguments
exc)

Unbound-os-environment-variable-exception objects are raised when an unbound
operating-system environment variable is accessed by the procedures getenv and
setenv . The parameter exc must be an unbound-os-environment-variable-exception
object.
The procedure unbound-os-environment-variable-exception? returns #t
when obj is an unbound-os-environment-variable-exception object and #f otherwise.
The procedure unbound-os-environment-variable-exception-
procedure returns the procedure that raised exc.
The procedure unbound-os-environment-variable-exception-
arguments returns the list of arguments of the procedure that raised
exc.
For example:

> (define (handler exc)
(if (unbound-os-environment-variable-exception? exc)

(list (unbound-os-environment-variable-exception-procedure exc)
(unbound-os-environment-variable-exception-arguments exc))

’not-unbound-os-environment-variable-exception))
> (with-exception-catcher

Chapter 12: Exceptions 71

handler
(lambda () (getenv " DOES_NOT_EXIST")))

(#<procedure #2 getenv> ("DOES_NOT_EXIST"))

12.4 Exception objects related to threads

[procedure](scheduler-exception? obj)
[procedure](scheduler-exception-reason exc)

Scheduler-exception objects are raised by the scheduler when some operation re-
quested from the host operating system failed (e.g. checking the status of the devices
in order to wake up threads waiting to perform I/O on these devices). The parameter
exc must be a scheduler-exception object.
The procedure scheduler-exception? returns #t when obj is a scheduler-
exception object and #f otherwise.
The procedure scheduler-exception-reason returns the os-exception object
that describes the failure detected by the scheduler.

[procedure](deadlock-exception? obj)
Deadlock-exception objects are raised when the scheduler discovers that all threads
are blocked and can make no further progress. In that case the scheduler unblocks
the primordial-thread and forces it to raise a deadlock-exception object.
The procedure deadlock-exception? returns #t when obj is a deadlock-exception
object and #f otherwise.
For example:

> (define (handler exc)
(if (deadlock-exception? exc)

exc
’not-deadlock-exception))

> (with-exception-catcher
handler
(lambda () (read (open-vector))))

#<deadlock-exception #2>

[procedure](abandoned-mutex-exception? obj)
Abandoned-mutex-exception objects are raised when the current thread locks a mutex
that was owned by a thread which terminated (see mutex-lock!).
The procedure abandoned-mutex-exception? returns #t when obj is a
abandoned-mutex-exception object and #f otherwise.
For example:

> (define (handler exc)
(if (abandoned-mutex-exception? exc)

exc
’not-abandoned-mutex-exception))

> (with-exception-catcher
handler
(lambda ()

(let ((m (make-mutex)))
(thread-join!

(thread-start!
(make-thread

Chapter 12: Exceptions 72

(lambda () (mutex-lock! m)))))
(mutex-lock! m))))

<abandoned-mutex-exception #2>

[procedure](join-timeout-exception? obj)
[procedure](join-timeout-exception-procedure exc)
[procedure](join-timeout-exception-arguments exc)

Join-timeout-exception objects are raised when a call to the thread-join! pro-
cedure reaches its timeout before the target thread terminates and a timeout-value
parameter is not specified. The parameter exc must be a join-timeout-exception
object.
The procedure join-timeout-exception? returns #t when obj is a join-timeout-
exception object and #f otherwise.
The procedure join-timeout-exception-procedure returns the procedure
that raised exc.
The procedure join-timeout-exception-arguments returns the list of argu-
ments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (join-timeout-exception? exc)

(list (join-timeout-exception-procedure exc)
(join-timeout-exception-arguments exc))

’not-join-timeout-exception))
> (with-exception-catcher

handler
(lambda ()

(thread-join!
(thread-start!

(make-thread
(lambda () (thread-sleep! 10))))

5)))
(#<procedure #2 thread-join!> (#<thread #3> 5))

[procedure](started-thread-exception? obj)
[procedure](started-thread-exception-procedure exc)
[procedure](started-thread-exception-arguments exc)

Started-thread-exception objects are raised when the target thread of a call to the
procedure thread-start! is already started. The parameter exc must be a started-
thread-exception object.
The procedure started-thread-exception? returns #t when obj is a started-
thread-exception object and #f otherwise.
The procedure started-thread-exception-procedure returns the procedure
that raised exc.
The procedure started-thread-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (started-thread-exception? exc)

(list (started-thread-exception-procedure exc)

Chapter 12: Exceptions 73

(started-thread-exception-arguments exc))
’not-started-thread-exception))

> (with-exception-catcher
handler
(lambda ()

(let ((t (make-thread (lambda () (expt 2 1000)))))
(thread-start! t)
(thread-start! t))))

(#<procedure #2 thread-start!> (#<thread #3>))

[procedure](terminated-thread-exception? obj)
[procedure](terminated-thread-exception-procedure exc)
[procedure](terminated-thread-exception-arguments exc)

Terminated-thread-exception objects are raised when the thread-join! procedure
is called and the target thread has terminated as a result of a call to the thread-
terminate! procedure. The parameter exc must be a terminated-thread-exception
object.

The procedure terminated-thread-exception? returns #t when obj is a
terminated-thread-exception object and #f otherwise.

The procedure terminated-thread-exception-procedure returns the proce-
dure that raised exc.

The procedure terminated-thread-exception-arguments returns the list of
arguments of the procedure that raised exc.

For example:
> (define (handler exc)

(if (terminated-thread-exception? exc)
(list (terminated-thread-exception-procedure exc)

(terminated-thread-exception-arguments exc))
’not-terminated-thread-exception))

> (with-exception-catcher
handler
(lambda ()

(thread-join!
(thread-start!

(make-thread
(lambda () (thread-terminate! (current-thread))))))))

(#<procedure #2 thread-join!> (#<thread #3>))

[procedure](uncaught-exception? obj)
[procedure](uncaught-exception-procedure exc)
[procedure](uncaught-exception-arguments exc)
[procedure](uncaught-exception-reason exc)

Uncaught-exception objects are raised when an object is raised in a thread and that
thread does not handle it (i.e. the thread terminated because it did not catch an
exception it raised). The parameter exc must be an uncaught-exception object.

The procedure uncaught-exception? returns #t when obj is an uncaught-
exception object and #f otherwise.

The procedure uncaught-exception-procedure returns the procedure that
raised exc.

Chapter 12: Exceptions 74

The procedure uncaught-exception-arguments returns the list of arguments
of the procedure that raised exc.
The procedure uncaught-exception-reason returns the object that was raised
by the thread and not handled by that thread.
For example:

> (define (handler exc)
(if (uncaught-exception? exc)

(list (uncaught-exception-procedure exc)
(uncaught-exception-arguments exc)
(uncaught-exception-reason exc))

’not-uncaught-exception))
> (with-exception-catcher

handler
(lambda ()

(thread-join!
(thread-start!

(make-thread
(lambda () (open-input-file " data " 99)))))))

(#<procedure #2 thread-join!>
(#<thread #3>)
#<wrong-number-of-arguments-exception #4>)

12.5 Exception objects related to C-interface

[procedure](cfun-conversion-exception? obj)
[procedure](cfun-conversion-exception-procedure exc)
[procedure](cfun-conversion-exception-arguments exc)
[procedure](cfun-conversion-exception-code exc)
[procedure](cfun-conversion-exception-message exc)

Cfun-conversion-exception objects are raised by the C-interface when converting be-
tween the Scheme representation and the C representation of a value during a call
from Scheme to C. The parameter exc must be a cfun-conversion-exception object.
The procedure cfun-conversion-exception? returns #t when obj is a cfun-
conversion-exception object and #f otherwise.
The procedure cfun-conversion-exception-procedure returns the proce-
dure that raised exc.
The procedure cfun-conversion-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
The procedure cfun-conversion-exception-code returns an exact integer er-
ror code that can be converted to a string by the err-code->string procedure.
The procedure cfun-conversion-exception-message returns #f or a string
giving details of the exception in a human-readable form.
For example:

% cat test.scm
(define weird

(c-lambda (char-string) nonnull-char-string
"___result = ___arg1;"))

% gsc -dynamic test.scm
% gsi

Chapter 12: Exceptions 75

Gambit Version 4.0 beta 8

> (load " test ")
"/u/feeley/test.o1"
> (weird " hello ")
"hello"
> (define (handler exc)

(if (cfun-conversion-exception? exc)
(list (cfun-conversion-exception-procedure exc)

(cfun-conversion-exception-arguments exc)
(err-code- >string (cfun-conversion-exception-code exc))
(cfun-conversion-exception-message exc))

’not-cfun-conversion-exception))
> (with-exception-catcher

handler
(lambda () (weird ’not-a-string)))

(#<procedure #2 weird>
(not-a-string)
"(Argument 1) Can’t convert to C char-string"
#f)

> (with-exception-catcher
handler
(lambda () (weird #f)))

(#<procedure #2 weird>
(#f)
"Can’t convert result from C nonnull-char-string"
#f)

[procedure](sfun-conversion-exception? obj)
[procedure](sfun-conversion-exception-procedure exc)
[procedure](sfun-conversion-exception-arguments exc)
[procedure](sfun-conversion-exception-code exc)
[procedure](sfun-conversion-exception-message exc)

Sfun-conversion-exception objects are raised by the C-interface when converting be-
tween the Scheme representation and the C representation of a value during a call
from C to Scheme. The parameter exc must be a sfun-conversion-exception object.
The procedure sfun-conversion-exception? returns #t when obj is a sfun-
conversion-exception object and #f otherwise.
The procedure sfun-conversion-exception-procedure returns the proce-
dure that raised exc.
The procedure sfun-conversion-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
The procedure sfun-conversion-exception-code returns an exact integer er-
ror code that can be converted to a string by the err-code->string procedure.
The procedure sfun-conversion-exception-message returns #f or a string
giving details of the exception in a human-readable form.
For example:

% cat test.scm
(c-define (f str) (nonnull-char-string) int "f" ""

(string->number str))
(define t1 (c-lambda () int "___result = f (\"123\");"))
(define t2 (c-lambda () int "___result = f (NULL);"))

Chapter 12: Exceptions 76

(define t3 (c-lambda () int "___result = f (\"1.5\");"))
% gsc -dynamic test.scm
% gsi
Gambit Version 4.0 beta 8

> (load " test ")
"/u/feeley/test.o1"
> (t1)
123
> (define (handler exc)

(if (sfun-conversion-exception? exc)
(list (sfun-conversion-exception-procedure exc)

(sfun-conversion-exception-arguments exc)
(err-code- >string (sfun-conversion-exception-code exc))
(sfun-conversion-exception-message exc))

’not-sfun-conversion-exception))
> (with-exception-catcher handler t2)
(#<procedure #2 f>

()
"(Argument 1) Can’t convert from C nonnull-char-string"
#f)

> (with-exception-catcher handler t3)
(#<procedure #2 f> () "Can’t convert result to C int" #f)

[procedure](multiple-c-return-exception? obj)
Multiple-c-return-exception objects are raised by the C-interface when a C to Scheme
procedure call returns and that call’s stack frame is no longer on the C stack because
the call has already returned, or has been removed from the C stack by a longjump .

The procedure multiple-c-return-exception? returns #t when obj is a
multiple-c-return-exception object and #f otherwise.

For example:
% cat test.scm
(c-define (f str) (char-string) scheme-object "f" ""

(pp (list ’entry ’str= str))
(let ((k (call-with-current-continuation (lambda (k) k))))

(pp (list ’exit ’k= k))
k))

(define scheme-to-c-to-scheme-and-back
(c-lambda (char-string) scheme-object

"___result = f (___arg1);"))
% gsc -dynamic test.scm
% gsi
Gambit Version 4.0 beta 8

> (load " test ")
"/u/feeley/test.o1"
> (define (handler exc)

(if (multiple-c-return-exception? exc)
exc
’not-multiple-c-return-exception))

> (with-exception-catcher
handler
(lambda ()

(let ((c (scheme-to-c-to-scheme-and-back " hello ")))
(pp c)
(c 999))))

Chapter 12: Exceptions 77

(entry str= "hello")
(exit k= #<procedure #2>)
#<procedure #2>
(exit k= 999)
#<multiple-c-return-exception #3>

12.6 Exception objects related to the reader

[procedure](datum-parsing-exception? obj)
[procedure](datum-parsing-exception-kind exc)
[procedure](datum-parsing-exception-parameters exc)

Datum-parsing-exception objects are raised by the reader (i.e. the read procedure)
when the input does not conform to the grammar for datum. The parameter exc
must be a datum-parsing-exception object.
The procedure datum-parsing-exception? returns #t when obj is a datum-
parsing-exception object and #f otherwise.
The procedure datum-parsing-exception-kind returns a symbol denoting the
kind of parsing error that was encountered by the reader when it raised exc. Here is
a table of the possible return values:

datum-or-eof-expected Datum or EOF expected
datum-expected Datum expected
improperly-placed-dot Improperly placed dot
incomplete-form-eof-reached Incomplete form, EOF reached
incomplete-form Incomplete form
character-out-of-range Character out of range
invalid-character-name Invalid ’#\ ’ name
illegal-character Illegal character
s8-expected Signed 8 bit exact integer expected
u8-expected Unsigned 8 bit exact integer expected
s16-expected Signed 16 bit exact integer expected
u16-expected Unsigned 16 bit exact integer expected
s32-expected Signed 32 bit exact integer expected
u32-expected Unsigned 32 bit exact integer expected
s64-expected Signed 64 bit exact integer expected
u64-expected Unsigned 64 bit exact integer expected
inexact-real-expected Inexact real expected
invalid-hex-escape Invalid hexadecimal escape
invalid-escaped-character Invalid escaped character
open-paren-expected ’(’ expected
invalid-token Invalid token
invalid-sharp-bang-name Invalid ’#!’ name
duplicate-label-definition Duplicate definition for label
missing-label-definition Missing definition for label
illegal-label-definition Illegal definition of label
invalid-infix-syntax-character Invalid infix syntax character
invalid-infix-syntax-number Invalid infix syntax number

Chapter 12: Exceptions 78

invalid-infix-syntax Invalid infix syntax

The procedure datum-parsing-exception-parameters returns a list of the
parameters associated with the parsing error that was encountered by the reader
when it raised exc.
For example:

> (define (handler exc)
(if (datum-parsing-exception? exc)

(list (datum-parsing-exception-kind exc)
(datum-parsing-exception-parameters exc))

’not-datum-parsing-exception))
> (with-exception-catcher

handler
(lambda ()

(with-input-from-string " (s # \\ pace) " read)))
(invalid-character-name ("pace"))

12.7 Exception objects related to evaluation and
compilation

[procedure](expression-parsing-exception? obj)
[procedure](expression-parsing-exception-kind exc)
[procedure](expression-parsing-exception-parameters exc)

Expression-parsing-exception objects are raised by the evaluator and compiler (i.e.
the procedures eval , compile-file , etc) when the input does not conform to the
grammar for expression. The parameter exc must be a expression-parsing-exception
object.
The procedure expression-parsing-exception? returns #t when obj is a
expression-parsing-exception object and #f otherwise.
The procedure expression-parsing-exception-kind returns a symbol denot-
ing the kind of parsing error that was encountered by the evaluator or compiler when
it raised exc. Here is a table of the possible return values:

id-expected Identifier expected
ill-formed-namespace Ill-formed namespace
ill-formed-namespace-prefix Ill-formed namespace prefix
namespace-prefix-must-be-
string

Namespace prefix must be a string

macro-used-as-variable Macro name can’t be used as a variable
ill-formed-macro-transformer Macro transformer must be a lambda expression
reserved-used-as-variable Reserved identifier can’t be used as a variable
ill-formed-special-form Ill-formed special form
cannot-open-file Can’t open file
filename-expected Filename expected
ill-placed-define Ill-placed ’define’
ill-placed-**include Ill-placed ’##include’
ill-placed-**define-macro Ill-placed ’##define-macro’
ill-placed-**declare Ill-placed ’##declare’

Chapter 12: Exceptions 79

ill-placed-**namespace Ill-placed ’##namespace’
ill-formed-expression Ill-formed expression
unsupported-special-form Interpreter does not support
ill-placed-unquote Ill-placed ’unquote’
ill-placed-unquote-splicing Ill-placed ’unquote-splicing’
parameter-must-be-id Parameter must be an identifier
parameter-must-be-id-or-
default

Parameter must be an identifier or default binding

duplicate-parameter Duplicate parameter in parameter list
ill-placed-dotted-rest-
parameter

Ill-placed dotted rest parameter

parameter-expected-after-rest #!rest must be followed by a parameter
ill-formed-default Ill-formed default binding
ill-placed-optional Ill-placed #!optional
ill-placed-rest Ill-placed #!rest
ill-placed-key Ill-placed #!key
key-expected-after-rest #!key expected after rest parameter
ill-placed-default Ill-placed default binding
duplicate-variable-definition Duplicate definition of a variable
empty-body Body must contain at least one expression
variable-must-be-id Defined variable must be an identifier
else-clause-not-last Else clause must be last
ill-formed-selector-list Ill-formed selector list
duplicate-variable-binding Duplicate variable in bindings
ill-formed-binding-list Ill-formed binding list
ill-formed-call Ill-formed procedure call
ill-formed-cond-expand Ill-formed ’cond-expand’
unfulfilled-cond-expand Unfulfilled ’cond-expand’

The procedure expression-parsing-exception-parameters returns a list of
the parameters associated with the parsing error that was encountered by the evalu-
ator or compiler when it raised exc.

For example:

> (define (handler exc)
(if (expression-parsing-exception? exc)

(list (expression-parsing-exception-kind exc)
(expression-parsing-exception-parameters exc))

’not-expression-parsing-exception))
> (with-exception-catcher

handler
(lambda ()

(eval ’(+ do 1))))
(reserved-used-as-variable (do))

[procedure](unbound-global-exception? obj)
[procedure](unbound-global-exception-variable exc)

Unbound-global-exception objects are raised when an unbound global variable is ac-
cessed. The parameter exc must be an unbound-global-exception object.

Chapter 12: Exceptions 80

The procedure unbound-global-exception? returns #t when obj is an
unbound-global-exception object and #f otherwise.
The procedure unbound-global-exception-variable returns a symbol iden-
tifying the unbound global variable.
For example:

> (define (handler exc)
(if (unbound-global-exception? exc)

(list ’variable= (unbound-global-exception-variable exc))
’not-unbound-global-exception))

> (with-exception-catcher
handler
(lambda () foo))

(variable= foo)

12.8 Exception objects related to type checking

[procedure](type-exception? obj)
[procedure](type-exception-procedure exc)
[procedure](type-exception-arguments exc)
[procedure](type-exception-arg-num exc)
[procedure](type-exception-type-id exc)

Type-exception objects are raised when a primitive procedure is called with an argu-
ment of incorrect type (i.e. when a run time type-check fails). The parameter exc
must be a type-exception object.
The procedure type-exception? returns #t when obj is a type-exception object
and #f otherwise.
The procedure type-exception-procedure returns the procedure that raised
exc.
The procedure type-exception-arguments returns the list of arguments of the
procedure that raised exc.
The procedure type-exception-arg-num returns the position of the argument
whose type is incorrect. Position 1 is the first argument.
The procedure type-exception-type-id returns an identifier of the type
expected. The type-id can be a symbol, such as number and string-or-
nonnegative-fixnum , or a record type descriptor.
For example:

> (define (handler exc)
(if (type-exception? exc)

(list (type-exception-procedure exc)
(type-exception-arguments exc)
(type-exception-arg-num exc)
(type-exception-type-id exc))

’not-type-exception))
> (with-exception-catcher

handler
(lambda () (vector-ref ’#(a b c) ’foo)))

(#<procedure #2 vector-ref> (#(a b c) foo) 2 exact-integer)
> (with-exception-catcher

handler

Chapter 12: Exceptions 81

(lambda () (time- >seconds ’foo)))
(#<procedure #3 time->seconds> (foo) 1 #<type #4 time>)

[procedure](range-exception? obj)
[procedure](range-exception-procedure exc)
[procedure](range-exception-arguments exc)
[procedure](range-exception-arg-num exc)

Range-exception objects are raised when a numeric parameter is not in the allowed
range. The parameter exc must be a range-exception object.
The procedure range-exception? returns #t when obj is a range-exception object
and #f otherwise.
The procedure range-exception-procedure returns the procedure that raised
exc.
The procedure range-exception-arguments returns the list of arguments of the
procedure that raised exc.
The procedure range-exception-arg-num returns the position of the argument
which is not in the allowed range. Position 1 is the first argument.
For example:

> (define (handler exc)
(if (range-exception? exc)

(list (range-exception-procedure exc)
(range-exception-arguments exc)
(range-exception-arg-num exc))

’not-range-exception))
> (with-exception-catcher

handler
(lambda () (string-ref " abcde " 10)))

(#<procedure #2 string-ref> ("abcde" 10) 2)

[procedure](divide-by-zero-exception? obj)
[procedure](divide-by-zero-exception-procedure exc)
[procedure](divide-by-zero-exception-arguments exc)

Divide-by-zero-exception objects are raised when a division by zero is attempted. The
parameter exc must be a divide-by-zero-exception object.
The procedure divide-by-zero-exception? returns #t when obj is a divide-
by-zero-exception object and #f otherwise.
The procedure divide-by-zero-exception-procedure returns the procedure
that raised exc.
The procedure divide-by-zero-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (divide-by-zero-exception? exc)

(list (divide-by-zero-exception-procedure exc)
(divide-by-zero-exception-arguments exc))

’not-divide-by-zero-exception))
> (with-exception-catcher

handler
(lambda () (/ 5 0 7)))

(#<procedure #2 /> (5 0 7))

Chapter 12: Exceptions 82

[procedure](improper-length-list-exception? obj)
[procedure](improper-length-list-exception-procedure exc)
[procedure](improper-length-list-exception-arguments exc)
[procedure](improper-length-list-exception-arg-num exc)

Improper-length-list-exception objects are raised by the map and for-each proce-
dures when they are called with two or more list arguments and the lists are not of the
same length. The parameter exc must be an improper-length-list-exception object.
The procedure improper-length-list-exception? returns #t when obj is an
improper-length-list-exception object and #f otherwise.
The procedure improper-length-list-exception-procedure returns the
procedure that raised exc.
The procedure improper-length-list-exception-arguments returns the
list of arguments of the procedure that raised exc.
The procedure improper-length-list-exception-arg-num returns the posi-
tion of the argument whose length is the shortest. Position 1 is the first argument.
For example:

> (define (handler exc)
(if (improper-length-list-exception? exc)

(list (improper-length-list-exception-procedure exc)
(improper-length-list-exception-arguments exc)
(improper-length-list-exception-arg-num exc))

’not-improper-length-list-exception))
> (with-exception-catcher

handler
(lambda () (map + ’(1 2) ’(3) ’(4 5))))

(#<procedure #2 map> (#<procedure #3 +> (1 2) (3) (4 5)) 3)

12.9 Exception objects related to procedure call

[procedure](wrong-number-of-arguments-exception? obj)
[procedure](wrong-number-of-arguments-exception-procedure

exc)
[procedure](wrong-number-of-arguments-exception-arguments

exc)
Wrong-number-of-arguments-exception objects are raised when a procedure is called
with the wrong number of arguments. The parameter exc must be a wrong-number-
of-arguments-exception object.
The procedure wrong-number-of-arguments-exception? returns #t when
obj is a wrong-number-of-arguments-exception object and #f otherwise.
The procedure wrong-number-of-arguments-exception-procedure returns
the procedure that raised exc.
The procedure wrong-number-of-arguments-exception-arguments returns
the list of arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (wrong-number-of-arguments-exception? exc)

(list (wrong-number-of-arguments-exception-procedure exc)

Chapter 12: Exceptions 83

(wrong-number-of-arguments-exception-arguments exc))
’not-wrong-number-of-arguments-exception))

> (with-exception-catcher
handler
(lambda () (open-input-file " data " 99)))

(#<procedure #2 open-input-file> ("data" 99))

[procedure](number-of-arguments-limit-exception? obj)
[procedure](number-of-arguments-limit-exception-procedure

exc)
[procedure](number-of-arguments-limit-exception-arguments

exc)
Number-of-arguments-limit-exception objects are raised by the apply procedure
when the procedure being called is passed more than 8192 arguments. The
parameter exc must be a number-of-arguments-limit-exception object.
The procedure number-of-arguments-limit-exception? returns #t when
obj is a number-of-arguments-limit-exception object and #f otherwise.
The procedure number-of-arguments-limit-exception-procedure returns
the target procedure of the call to apply that raised exc.
The procedure number-of-arguments-limit-exception-arguments returns
the list of arguments of the target procedure of the call to apply that raised exc.
For example:

> (define (iota n) (if (= n 0) ’() (cons n (iota (- n 1)))))
> (define (handler exc)

(if (number-of-arguments-limit-exception? exc)
(list (number-of-arguments-limit-exception-procedure exc)

(length (number-of-arguments-limit-exception-arguments exc)))
’not-number-of-arguments-limit-exception))

> (with-exception-catcher
handler
(lambda () (apply + 1 2 3 (iota 8190))))

(#<procedure #2 +> 8193)

[procedure](nonprocedure-operator-exception? obj)
[procedure](nonprocedure-operator-exception-operator exc)
[procedure](nonprocedure-operator-exception-arguments exc)

Nonprocedure-operator-exception objects are raised when a procedure call is exe-
cuted and the operator position is not a procedure. The parameter exc must be an
nonprocedure-operator-exception object.
The procedure nonprocedure-operator-exception? returns #t when obj is
an nonprocedure-operator-exception object and #f otherwise.
The procedure nonprocedure-operator-exception-operator returns the
value in operator position of the procedure call that raised exc.
The procedure nonprocedure-operator-exception-arguments returns the
list of arguments of the procedure call that raised exc.
For example:

> (define (handler exc)
(if (nonprocedure-operator-exception? exc)

(list (nonprocedure-operator-exception-operator exc)

Chapter 12: Exceptions 84

(nonprocedure-operator-exception-arguments exc))
’not-nonprocedure-operator-exception))

> (with-exception-catcher
handler
(lambda () (11 22 33)))

(11 (22 33))

[procedure](unknown-keyword-argument-exception? obj)
[procedure](unknown-keyword-argument-exception-procedure exc)
[procedure](unknown-keyword-argument-exception-arguments exc)

Unknown-keyword-argument-exception objects are raised when a procedure accepting
keyword arguments is called and one of the keywords supplied is not among those that
are expected. The parameter exc must be an unknown-keyword-argument-exception
object.
The procedure unknown-keyword-argument-exception? returns #t when obj
is an unknown-keyword-argument-exception object and #f otherwise.
The procedure unknown-keyword-argument-exception-procedure returns
the procedure that raised exc.
The procedure unknown-keyword-argument-exception-arguments returns
the list of arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (unknown-keyword-argument-exception? exc)

(list (unknown-keyword-argument-exception-procedure exc)
(unknown-keyword-argument-exception-arguments exc))

’not-unknown-keyword-argument-exception))
> (with-exception-catcher

handler
(lambda () ((lambda (#!key (foo 5)) foo) bar: 11)))

(#<procedure #2> (bar: 11))

[procedure](keyword-expected-exception? obj)
[procedure](keyword-expected-exception-procedure exc)
[procedure](keyword-expected-exception-arguments exc)

Keyword-expected-exception objects are raised when a procedure accepting keyword
arguments is called and a nonkeyword was supplied where a keyword was expected.
The parameter exc must be an keyword-expected-exception object.
The procedure keyword-expected-exception? returns #t when obj is an
keyword-expected-exception object and #f otherwise.
The procedure keyword-expected-exception-procedure returns the proce-
dure that raised exc.
The procedure keyword-expected-exception-arguments returns the list of
arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (keyword-expected-exception? exc)

(list (keyword-expected-exception-procedure exc)
(keyword-expected-exception-arguments exc))

’not-keyword-expected-exception))

Chapter 12: Exceptions 85

> (with-exception-catcher
handler
(lambda () ((lambda (#!key (foo 5)) foo) 11 22)))

(#<procedure #2> (11 22))

12.10 Other exception objects

[procedure](error-exception? obj)
[procedure](error-exception-message exc)
[procedure](error-exception-parameters exc)

Error-exception objects are raised when the error procedure is called. The param-
eter exc must be an error-exception object.
The procedure error-exception? returns #t when obj is an error-exception object
and #f otherwise.
The procedure error-exception-message returns the first argument of the call
to error that raised exc.
The procedure error-exception-parameters returns the list of arguments,
starting with the second argument, of the call to error that raised exc.
For example:

> (define (handler exc)
(if (error-exception? exc)

(list (error-exception-message exc)
(error-exception-parameters exc))

’not-error-exception))
> (with-exception-catcher

handler
(lambda () (error " unexpected object: " 123)))

("unexpected object:" (123))

Chapter 13: Host environment 86

13 Host environment

The host environment is the set of resources, such as the filesystem, network and processes,
that are managed by the operating system within which the Scheme program is executing.
This chapter specifies how the host environment can be accessed from within the Scheme
program.

In this chapter we say that the Scheme program being executed is a process, even though
the concept of process does not exist in some operating systems supported by Gambit (e.g.
MSDOS and Classic Mac OS).

13.1 Handling of file names

Gambit uses a naming convention for files that is compatible with the one used by the host
environment but extended to allow referring to the home directory of the current user or
some specific user and the Gambit installation directory.

A path is a string that denotes a file, for example "src/readme.txt" . Each com-
ponent of a path is separated by a ‘/ ’ under UNIX and Mac OS X, by a ‘/ ’ or ‘\ ’ under
MSDOS and Microsoft Windows, and by a ‘: ’ under Classic Mac OS. A leading separator
indicates an absolute path under UNIX, Mac OS X, MSDOS and Microsoft Windows but
indicates a relative path under Classic Mac OS. A path which does not contain a path
separator is relative to the current working directory on all operating systems, including
Classic Mac OS. A volume specifier such as ‘C: ’ may prefix a file name under MSDOS and
Microsoft Windows.

Under Classic Mac OS the folder ‘Gambit-C ’ must exist in the ‘Preferences ’ folder
in the ‘System ’ folder and must not be an alias.

The rest of this section uses ‘/ ’ to represent the path separator.
A path which starts with the characters ‘˜˜/ ’ denotes a file in the Gambit installation

directory. This directory is normally ‘/usr/local/Gambit-C/ ’ under UNIX and Mac
OS X, ‘C:\Gambit-C\ ’ under MSDOS and Microsoft Windows, and under Classic Mac
OS the ‘Gambit-C ’ folder. To override this binding under UNIX, Mac OS X, MSDOS
and Microsoft Windows, use the ‘-:=< dir >’ runtime option or define the ‘GAMBCOPT’
environment variable.

A path which starts with the characters ‘˜/ ’ denotes a file in the user’s home directory.
The user’s home directory is contained in the ‘HOME’ environment variable under UNIX,
Mac OS X, MSDOS and Microsoft Windows. Under MSDOS and Microsoft Windows, if
the ‘HOME’ environment variable is not defined, the environment variables ‘HOMEDRIVE’
and ‘HOMEPATH’ are concatenated if they are defined. If this fails to yield a home directory,
the Gambit installation directory is used instead. Under Classic Mac OS the user’s home
directory is the folder which contains the application.

A path which starts with the characters ‘˜ username / ’ denotes a file in the home direc-
tory of the given user. Under UNIX and Mac OS X this is found using the password file.
There is no equivalent under MSDOS, Microsoft Windows, and Classic Mac OS.

[procedure](current-directory [new-current-directory])
The parameter object current-directory is bound to the current working di-
rectory. Calling this procedure with no argument returns the absolute normalized

Chapter 13: Host environment 87

path of the directory and calling this procedure with one argument sets the directory
to new-current-directory. The initial binding of this parameter object is the current
working directory of the current process. Modifications of the parameter object do
not change the current working directory of the current process (i.e. that is accessible
with the UNIX getcwd() function). It is an error to mutate the string returned by
current-directory .

For example under UNIX:
> (current-directory)
"/u/feeley/work/"
> (current-directory " .. ")
> (current-directory)
"/u/feeley/"
> (parameterize ((current-directory "˜˜")) (path-expand " foo "))
"/usr/local/Gambit-C/foo"

[procedure](path-expand path [origin-directory])
The procedure path-expand takes the path of a file or directory and returns an
expanded path, which is an absolute path when path or origin-directory are
absolute paths. The optional origin-directory parameter, which defaults to the
current working directory, is the directory used to resolve relative paths. Components
of the paths path and origin-directory need not exist.

For example under UNIX:
> (path-expand " foo ")
"/u/feeley/work/foo"
> (path-expand "˜ /foo ")
"/u/feeley/foo"
> (path-expand "˜˜ /foo ")
"/usr/local/Gambit-C/foo"
> (path-expand " ../foo ")
"/u/feeley/work/../foo"
> (path-expand " foo " "")
"foo"
> (path-expand " foo " " /tmp ")
"/tmp/foo"
> (path-expand " this/file/does/not/exist ")
"/u/feeley/work/this/file/does/not/exist"
> (path-expand "")
"/u/feeley/work/"

[procedure](path-normalize path [allow-relative?
[origin-directory]])

The procedure path-normalize takes a path of a file or directory and returns its
normalized path. The optional origin-directory parameter, which defaults to
the current working directory, is the directory used to resolve relative paths. All com-
ponents of the paths path and origin-directory must exist, except possibly the
last component of path . A normalized path is a path containing no redundant parts
and which is consistent with the current structure of the filesystem. A normalized
path of a directory will always end with a path separator (i.e. ‘/ ’, ‘\ ’, or ‘: ’ depend-
ing on the operating system). The optional allow-relative? parameter, which
defaults to #f , indicates if the path returned can be expressed relatively to origin-
directory : a #f requests an absolute path, the symbol shortest requests the

Chapter 13: Host environment 88

shortest of the absolute and relative paths, and any other value requests the relative
path. The shortest path is useful for interaction with the user because short relative
paths are typically easier to read than long absolute paths.

For example under UNIX:

> (path-expand " ../foo ")
"/u/feeley/work/../foo"
> (path-normalize " ../foo ")
"/u/feeley/work/foo/"
> (path-normalize " this/file/does/not/exist ")
*** ERROR IN (console)@3.1 -- No such file or directory
(path-normalize "this/file/does/not/exist")

[procedure](path-extension path)
[procedure](path-strip-extension path)
[procedure](path-directory path)
[procedure](path-strip-directory path)
[procedure](path-volume path)
[procedure](path-strip-volume path)

These procedures extract various parts of a path, which need not be a normalized path.
The procedure path-extension returns the file extension (including the period) or
the empty string if there is no extension. The procedure path-strip-extension
returns the path with the extension stripped off. The procedure path-directory
returns the file’s directory (including the last path separator) or the empty string if no
directory is specified in the path. The procedure path-strip-directory returns
the path with the directory stripped off. The procedure path-volume returns the
file’s volume (including the last path separator) or the empty string if no volume is
specified in the path. The procedure path-strip-volume returns the path with
the volume stripped off.

For example under UNIX:

> (path-extension " /tmp/foo ")
""
> (path-extension " /tmp/foo.txt ")
".txt"
> (path-strip-extension " /tmp/foo.txt ")
"/tmp/foo"
> (path-directory " /tmp/foo.txt ")
"/tmp/"
> (path-strip-directory " /tmp/foo.txt ")
"foo.txt"
> (path-volume " /tmp/foo.txt ")
""
> (path-volume " C:/tmp/foo.txt ")
"" ; result is "C:" under Microsoft Windows
> (path-strip-volume " C:/tmp/foo.txt ")
"C:/tmp/foo.txt" ; result is "/tmp/foo.txt" under Microsoft Windows

Chapter 13: Host environment 89

13.2 Shell command execution

[procedure](shell-command command)
The procedure shell-command calls up the shell to execute command which must
be a string. This procedure returns the exit status of the shell in the form that the
C library’s system routine returns.
For example under UNIX:

> (shell-command " ls -sk f*.scm ")
4 fact.scm 4 fib.scm
0

13.3 Process termination

[procedure](exit [status])
The procedure exit causes the process to terminate with the status status which
must be an exact integer in the range 0 to 255. If it is not specified, the status defaults
to 0.
For example under UNIX:

% gsi
Gambit Version 4.0 beta 8

> (exit 42)
% echo $?
42

13.4 Command line arguments

[procedure](command-line)
This procedure returns a list of strings corresponding to the command line arguments,
including the program file name as the first element of the list. When the interpreter
executes a Scheme script, the list returned by command-line contains the script’s
absolute path followed by the remaining command line arguments.
For example under UNIX:

% gsi -:d -e " (pretty-print (command-line)) "
("gsi" "-e" "(pretty-print (command-line))")
% cat foo
#!/usr/local/Gambit-C/bin/gsi-script
(pretty-print (command-line))
% ./foo 1 2 " 3 4"
("/u/feeley/./foo" "1" "2" "3 4")

13.5 Environment variables

[procedure](getenv name [default])
[procedure](setenv name new-value)

The procedure getenv returns the value of the environment variable name of the
current process. Variable names are denoted with strings. A string is returned if
the environment variable is bound, otherwise default is returned if it is specified,
otherwise an exception is raised.

Chapter 13: Host environment 90

The procedure setenv changes the binding of the environment variable name to
new-value which must be a string or #f . If new-value is #f the binding is removed.
For example under UNIX:

> (getenv " HOME")
"/u/feeley"
> (getenv " DOES_NOT_EXIST" #f)
#f
> (setenv " DOES_NOT_EXIST" " it does now ")
> (getenv " DOES_NOT_EXIST" #f)
"it does now"
> (setenv " DOES_NOT_EXIST" #f)
> (getenv " DOES_NOT_EXIST" #f)
#f
> (getenv " DOES_NOT_EXIST")
*** ERROR IN (console)@7.1 -- Unbound OS environment variable
(getenv "DOES_NOT_EXIST")

13.6 Measuring time

Procedures are available for measuring real time (aka “wall” time) and cpu time (the amount
of time the cpu has been executing the process). The resolution of the real time and cpu
time clock is operating system dependent. Typically the resolution of the cpu time clock is
rather coarse (measured in “ticks” of 1/60th or 1/100th of a second). Real time is internally
computed relative to some arbitrary point in time using floating point numbers, which means
that there is a gradual loss of resolution as time elapses. Moreover, some operating systems
report time in number of ticks using a 32 bit integer so the value returned by the time
related procedures may wraparound much before any significant loss of resolution occurs
(for example 2.7 years if ticks are 1/50th of a second).

[procedure](current-time)
[procedure](time->seconds time)
[procedure](seconds->time x)

The procedure current-time returns a “time” object representing the current point
in real time. The procedure time->seconds converts the time object time into an
inexact real number representing the number of seconds elapsed since the “epoch”
(which is 00:00:00 Coordinated Universal Time 01-01-1970). The procedure time-
>seconds converts the real number x representing the number of seconds elapsed
since the “epoch” into a time object.
For example:

> (time- >seconds (current-time))
1083118758.63973
> (time- >seconds (current-time))
1083118759.909163

[procedure](process-times)
[procedure](cpu-time)
[procedure](real-time)

The procedure process-times returns a three element f64vector containing the
cpu time that has been used by the program and the real time that has elapsed since
it was started. The first element corresponds to “user” time in seconds, the second
element corresponds to “system” time in seconds and the third element is the elapsed

Chapter 13: Host environment 91

real time in seconds. On operating systems that can’t differentiate user and system
time, the system time is zero. On operating systems that can’t measure cpu time,
the user time is equal to the elapsed real time and the system time is zero.

The procedure cpu-time returns the cpu time in seconds that has been used by the
program (user time plus system time).

The procedure real-time returns the real time that has elapsed since the program
was started.

For example:
> (process-times)
#f64(.07 0. 486.77118492126465)
> (cpu-time)
.08
> (real-time)
615.2873070240021

13.7 File information

[procedure](file-exists? path)
The path argument must be a string. This procedure returns #t when a file by that
name exists, and returns #f otherwise.

For example:
> (file-exists? " nofile ")
#f

[procedure](file-info path [chase?])
This procedure accesses the filesystem to get information about the file whose location
is given by the string path. A file-information record is returned that contains the
file’s type, the device number, the inode number, the mode (permission bits), the
number of links, the file’s user id, the file’s group id, the file’s size in bytes, the times
of last-access, last-modification and last-change, the attributes, and the creation time.

When chase? is present and #f , symbolic links will not be chased, in other words
if path refers to a symbolic link the file-info procedure will return information
about the link rather than the file it links to.

For example:
> (file-info " /dev/tty ")
#<file-info #2

type: character-special
device: 27420916
inode: 28773124
mode: 438
number-of-links: 1
owner: 0
group: 0
size: 0
last-access-time: #<time #3>
last-modification-time: #<time #4>
last-change-time: #<time #5>
attributes: 128
creation-time: #<time #6>>

Chapter 13: Host environment 92

[procedure](file-info? obj)
This procedure returns #t when obj is a file-information record and #f otherwise.

For example:
> (file-info? (file-info " /dev/tty "))
#t
> (file-info? 123)
#f

[procedure](file-info-type file-info)
Returns the type field of the file-information record file-info. The type is denoted by
a symbol. The following types are possible:

regular Regular file

directory Directory

character-special
Character special device

block-special Block special device

fifo FIFO

symbolic-link Symbolic link

socket Socket

unknown File is of an unknown type

For example:
> (file-info-type (file-info " /dev/tty "))
character-special
> (file-info-type (file-info " /dev "))
directory

[procedure](file-info-device file-info)
Returns the device field of the file-information record file-info.

For example:
> (file-info-device (file-info " /dev/tty "))
27420916

[procedure](file-info-inode file-info)
Returns the inode field of the file-information record file-info.

For example:
> (file-info-inode (file-info " /dev/tty "))
28773124

[procedure](file-info-mode file-info)
Returns the mode field of the file-information record file-info.

For example:
> (file-info-mode (file-info " /dev/tty "))
438

Chapter 13: Host environment 93

[procedure](file-info-number-of-links file-info)
Returns the number-of-links field of the file-information record file-info.

For example:
> (file-info-number-of-links (file-info " /dev/tty "))
1

[procedure](file-info-owner file-info)
Returns the owner field of the file-information record file-info.

For example:
> (file-info-owner (file-info " /dev/tty "))
0

[procedure](file-info-group file-info)
Returns the group field of the file-information record file-info.

For example:
> (file-info-group (file-info " /dev/tty "))
0

[procedure](file-info-size file-info)
Returns the size field of the file-information record file-info.

For example:
> (file-info-size (file-info " /dev/tty "))
0

[procedure](file-info-last-access-time file-info)
Returns the last-access-time field of the file-information record file-info.

For example:
> (file-info-last-access-time (file-info " /dev/tty "))
#<time #2>

[procedure](file-info-last-modification-time file-info)
Returns the last-modification-time field of the file-information record file-info.

For example:
> (file-info-last-modification-time (file-info " /dev/tty "))
#<time #2>

[procedure](file-info-last-change-time file-info)
Returns the last-change-time field of the file-information record file-info.

For example:
> (file-info-last-change-time (file-info " /dev/tty "))
#<time #2>

[procedure](file-info-attributes file-info)
Returns the attributes field of the file-information record file-info.

For example:
> (file-info-attributes (file-info " /dev/tty "))
128

Chapter 13: Host environment 94

[procedure](file-info-creation-time file-info)
Returns the creation-time field of the file-information record file-info.

For example:
> (file-info-creation-time (file-info " /dev/tty "))
#<time #2>

[procedure](file-type path)
[procedure](file-device path)
[procedure](file-inode path)
[procedure](file-mode path)
[procedure](file-number-of-links path)
[procedure](file-owner path)
[procedure](file-group path)
[procedure](file-size path)
[procedure](file-last-access-time path)
[procedure](file-last-modification-time path)
[procedure](file-last-change-time path)
[procedure](file-attributes path)
[procedure](file-creation-time path)

These procedures combine a call to the file-info procedure and a call to a file-
information record field accessor. For instance (file-type path) is equivalent to
(file-info-type (file-info path)) .

13.8 Group information

[procedure](group-info group-name-or-id)
This procedure accesses the group database to get information about the group iden-
tified by group-name-or-id, which is the group’s symbolic name (string) or the group’s
GID (exact integer). A group-information record is returned that contains the group’s
symbolic name, the group’s id (GID), and the group’s members (list of symbolic user
names).

For example:
> (group-info " daemon")
#<group-info #2

name: "daemon"
gid: 2
members: ("root" "bin" "daemon")>

> (group-info 150)
#<group-info #3

name: "guest"
gid: 150
members: ("john" "george")>

> (group-info 5000)
*** ERROR IN (console)@3.1 -- No such file or directory
(group-info 5000)

[procedure](group-info? obj)
This procedure returns #t when obj is a group-information record and #f otherwise.

For example:

Chapter 13: Host environment 95

> (group-info? (group-info " daemon"))
#t
> (group-info? 123)
#f

[procedure](group-info-name group-info)
Returns the symbolic name field of the group-information record group-info.

For example:
> (group-info-name (group-info 150))
"guest"

[procedure](group-info-gid group-info)
Returns the group id field of the group-information record group-info.

For example:
> (group-info-gid (group-info " daemon"))
2

[procedure](group-info-members group-info)
Returns the members field of the group-information record group-info.

For example:
> (group-info-members (group-info " daemon"))
("root" "bin" "daemon")

13.9 User information

[procedure](user-info user-name-or-id)
This procedure accesses the user database to get information about the user identified
by user-name-or-id, which is the user’s symbolic name (string) or the user’s UID (exact
integer). A user-information record is returned that contains the user’s symbolic
name, the user’s id (UID), the user’s group id (GID), the path to the user’s home
directory, and the user’s login shell.

For example:
> (user-info " feeley ")
#<user-info #2

name: "feeley"
uid: 502
gid: 599
home: "/u/feeley"
shell: "/bin/bash">

> (user-info 0)
#<user-info #3

name: "root"
uid: 0
gid: 0
home: "/var/root"
shell: "/bin/sh">

> (user-info 5000)
*** ERROR IN (console)@3.1 -- No such file or directory
(user-info 5000)

Chapter 13: Host environment 96

[procedure](user-info? obj)
This procedure returns #t when obj is a user-information record and #f otherwise.

For example:
> (user-info? (user-info " feeley "))
#t
> (user-info? 123)
#f

[procedure](user-info-name user-info)
Returns the symbolic name field of the user-information record user-info.

For example:
> (user-info-name (user-info 0))
"root"

[procedure](user-info-uid user-info)
Returns the user id field of the user-information record user-info.

For example:
> (user-info-uid (user-info " feeley "))
501

[procedure](user-info-gid user-info)
Returns the group id field of the user-information record user-info.

For example:
> (user-info-gid (user-info " feeley "))
599

[procedure](user-info-home user-info)
Returns the home directory field of the user-information record user-info.

For example:
> (user-info-home (user-info 0))
"/var/root"

[procedure](user-info-shell user-info)
Returns the shell field of the user-information record user-info.

For example:
> (user-info-shell (user-info 0))
"/bin/sh"

13.10 Host information

[procedure](host-info host-name)
This procedure accesses the internet host database to get information about the ma-
chine whose name is denoted by the string host-name. A host-information record is
returned that contains the official name of the machine, a list of aliases (alternative
names), and a non-empty list of IP addresses for this machine. An exception is raised
when host-name does not appear in the database.

For example:

Chapter 13: Host environment 97

> (host-info " www.google.com ")
#<host-info #2

name: "www.google.akadns.net"
aliases: ("www.google.com")
addresses: (#u8(64 233 161 99) #u8(64 233 161 104))>

> (host-info " unknown.domain ")
*** ERROR IN (console)@2.1 -- Unknown host
(host-info "unknown.domain")

[procedure](host-info? obj)
This procedure returns #t when obj is a host-information record and #f otherwise.
For example:

> (host-info? (host-info " www.google.com "))
#t
> (host-info? 123)
#f

[procedure](host-info-name host-info)
Returns the official name field of the host-information record host-info.
For example:

> (host-info-name (host-info " www.google.com "))
"www.google.akadns.net"

[procedure](host-info-aliases host-info)
Returns the aliases field of the host-information record host-info. This field is a
possibly empty list of strings.
For example:

> (host-info-aliases (host-info " www.google.com "))
("www.google.com")

[procedure](host-info-addresses host-info)
Returns the addresses field of the host-information record host-info. This field is a
non-empty list of u8vectors denoting IP addresses.
For example:

> (host-info-addresses (host-info " www.google.com "))
(#u8(64 233 161 99) #u8(64 233 161 104))

Chapter 14: I/O and ports 98

14 I/O and ports

14.1 Unidirectional and bidirectional ports

Unidirectional ports allow communication between a producer of information and a con-
sumer. An input-port’s producer is typically a resource managed by the operating system
(such as a file, a process or a network connection) and the consumer is the Scheme program.
The roles are reversed for an output-port.

Associated with each port are settings that affect I/O operations on that port (encod-
ing of characters to bytes, end-of-line encoding, type of buffering, etc). Port settings are
specified when the port is created. Some port settings can be changed after a port is created.

Bidirectional ports, also called input-output-ports, allow communication in both direc-
tions. They are best viewed as an object that groups two separate unidirectional ports (one
in each direction). Each direction has its own port settings and can be closed independently
from the other direction.

14.2 Port classes

The four classes of ports listed below form an inheritance hierarchy. Operations possible for
a certain class of port are also possible for the subclasses. Only device-ports are connected
to a device managed by the operating system. For instance it is possible to create ports
that behave as a FIFO where the Scheme program is both the producer and consumer of
information (possibly one thread is the producer and another thread is the consumer).

1. An object-port (or simply a port) provides operations to read and write Scheme data
(i.e. any Scheme object) to/from the port. It also provides operations to force output
to occur, to change the way threads block on the port, and to close the port. Note
that the class of objects for which write/read invariance is guaranteed depends on the
particular class of port.

2. A character-port provides all the operations of an object-port, and also operations to
read and write individual characters to/from the port. When a Scheme object is written
to a character-port, it is converted into the sequence of characters that corresponds
to its external-representation. When reading a Scheme object, an inverse conversion
occurs. Note that some Scheme objects do not have an external textual representation
that can be read back.

3. A byte-port provides all the operations of a character-port, and also operations to read
and write individual bytes to/from the port. When a character is written to a byte-
port, some encoding of that character into a sequence of bytes will occur (for example,
#\newline will be encoded as the 2 bytes CR-LF when using LATIN-1 character
encoding and cr-lf end-of-line encoding, and a non-ASCII character will generate
more than 1 byte when using UTF8 character encoding). When reading a character, a
similar decoding occurs.

4. A device-port provides all the operations of a byte-port, and also operations to control
the operating system managed device (file, network connection, terminal, etc) that is
connected to the port.

Chapter 14: I/O and ports 99

14.3 Port settings

Some port settings are only valid for specific port classes whereas some others are valid
for all ports. Port settings are specified when a port is created. The settings that are not
specified will default to some reasonable values. Keyword objects are used to name the
settings to be set. As a simple example, a device-port connected to the file "foo" can be
created using the call

(open-input-file "foo")

This will use default settings for the character encoding, buffering, etc. If the UTF8
character encoding is desired, then the port could be opened using the call

(open-input-file (list path: "foo" char-encoding: ’utf8))

Here the argument of the procedure open-input-file has been replaced by a port
settings list which specifies the value of each port setting that should not be set to the default
value. Note that some port settings have no useful default and it is therefore required to
specify a value for them, such as the path: in the case of the file opening procedures. All
port creation procedures (i.e. named open-...) take a single argument that can either be
a port settings list or a value of a type that depends on the kind of port being created (a
path string for files, an IP port number for TCP servers, etc).

14.4 Object-ports

14.4.1 Object-port settings

The following is a list of port settings that are valid for all types of ports.
• direction: (input | output | input-output)

This setting controls the direction of the port. The symbol input indicates a unidi-
rectional input-port, the symbol output indicates a unidirectional output-port, and
the symbol input-output indicates a bidirectional port. The default value of this
setting depends on the port creation procedure.

• buffering: (#f | #t | line)
This setting controls the buffering of the port. To set each direction separately the
keywords input-buffering: and output-buffering: must be used instead of
buffering: . The value #f selects unbuffered I/O, the value #t selects fully buffered
I/O, and the symbol line selects line buffered I/O (the output buffer is drained when
a #\newline character is written). Line buffered I/O only applies to character-ports.
The default value of this setting is operating system dependent except consoles which
are unbuffered.

14.4.2 Object-port operations

[procedure](input-port? obj)
[procedure](output-port? obj)
[procedure](port? obj)

The procedure input-port? returns #t when obj is a unidirectional input-port or
a bidirectional port and #f otherwise.
The procedure output-port? returns #t when obj is a unidirectional output-port
or a bidirectional port and #f otherwise.

Chapter 14: I/O and ports 100

The procedure port? returns #t when obj is a port (either unidirectional or bidi-
rectional) and #f otherwise.
For example:

> (input-port? (current-input-port))
#t
> (call-with-input-string " some text " output-port?)
#f
> (port? (current-output-port))
#t

[procedure](read [port])
This procedure reads and returns the next Scheme datum from the input-port port.
The end-of-file object is returned when the end of the stream is reached. If it is not
specified, port defaults to the current input-port.
For example:

> (call-with-input-string " some text " read)
some
> (call-with-input-string "" read)
#!eof

[procedure](read-all [port [reader]])
This procedure repeatedly calls the procedure reader with port as the sole argument
and accumulates a list of each value returned up to the end-of-file object. The pro-
cedure read-all returns the accumulated list without the end-of-file object. If it
is not specified, port defaults to the current input-port. If it is not specified, reader
defaults to the procedure read .
For example:

> (call-with-input-string " 3,2,1 \ ngo! " read-all)
(3 ,2 ,1 go!)
> (call-with-input-string " 3,2,1 \ ngo! "

(lambda (p) (read-all p read-char)))
(#\3 #\, #\2 #\, #\1 #\newline #\g #\o #\!)
> (call-with-input-string " 3,2,1 \ ngo! "

(lambda (p) (read-all p read-line)))
("3,2,1" "go!")

[procedure](write obj [port])
This procedure writes the Scheme datum obj to the output-port port and the value
returned is unspecified. If it is not specified, port defaults to the current output-port.
For example:

> (write (list ’compare (list ’quote ’ @x) ’and (list ’unquote ’ @x)))
(compare ’@x and , @x)>

[procedure](newline [port])
This procedure writes an “object separator” to the output-port port and the value
returned is unspecified. The separator ensures that the next Scheme datum written
with the write procedure will not be confused with the latest datum that was writ-
ten. On character-ports this is done by writing the character #\newline . On ports
where successive objects are implicitly distinct (such as “vector ports”) this procedure
does nothing.

Chapter 14: I/O and ports 101

Regardless of the class of a port p and assuming that the external textual represen-
tation of the object x is readable, the expression (begin (write x p) (newline
p)) will write to p a representation of x that can be read back with the procedure
read . If it is not specified, port defaults to the current output-port.
For example:

> (begin (write 123) (newline) (write 456) (newline))
123
456

[procedure](force-output [port])
The procedure force-output causes the output buffers of the output-port port to
be drained (i.e. the data is sent to its destination). If port is not specified, the current
output port is used.
For example:

> (define p (open-tcp-client
(list server-address: " www.iro.umontreal.ca "

port-number: 80)))
> (display " GET /\ n" p)
> (force-output p)
> (read-line p)
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\""

[procedure](close-input-port port)
[procedure](close-output-port port)
[procedure](close-port port)

The port argument of these procedures must be a unidirectional or a bidirectional
port. For all three procedures the value returned is unspecified.
The procedure close-input-port closes the input-port side of port, which must
not be a unidirectional output-port.
The procedure close-output-port closes the output-port side of port, which must
not be a unidirectional input-port. The ouput buffers are drained before port is closed.
The procedure close-port closes all sides of the port. Unless port is a unidirectional
input-port, the output buffers are drained before port is closed.
For example:

> (define p (open-tcp-client
(list server-address: " www.iro.umontreal.ca "

port-number: 80)))
> (display " GET /\ n" p)
> (close-output-port p)
> (read-line p)
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\""

[procedure](input-port-timeout-set! port timeout [thunk])
[procedure](output-port-timeout-set! port timeout [thunk])

When a thread tries to perform an I/O operation on a port, the requested operation
may not be immediately possible and the thread must wait. For example, the thread
may be trying to read a line of text from the console and the user has not typed
anything yet, or the thread may be trying to write to a network connection faster
than the network can handle. In such situations the thread normally blocks until the
operation becomes possible.

Chapter 14: I/O and ports 102

It is sometimes necessary to guarantee that the thread will not block too long. For
this purpose, to each input-port and output-port is attached a timeout and timeout-
thunk. The timeout indicates the point in time beyond which the thread should
stop waiting on an input and output operation respectively. When the timeout is
reached, the thread calls the port’s timeout-thunk. If the timeout-thunk returns #f
the thread abandons trying to perform the operation (in the case of an input operation
an end-of-file is read and in the case of an output operation an exception is raised).
Otherwise, the thread will block again waiting for the operation to become possible
(note that if the port’s timeout has not changed the thread will immediately call the
timeout-thunk again).

The procedure input-port-timeout-set! sets the timeout of the input-port
port to timeout and the timeout-thunk to thunk. The procedure output-port-
timeout-set! sets the timeout of the output-port port to timeout and the timeout-
thunk to thunk. If it is not specified, the thunk defaults to a thunk that returns #f .
The timeout is either a time object indicating an absolute point in time, or it is a real
number which indicates the number of seconds relative to the moment the procedure
is called. For both procedures the value returned is unspecified.

When a port is created the timeout is set to infinity (+inf.). This causes the thread
to wait as long as needed for the operation to become possible. Setting the timeout
to a point in the past (-inf.) will cause the thread to attempt the I/O operation
and never block (i.e. the timeout-thunk is called if the operation is not immediately
possible).

The following example shows how to cause the REPL to terminate when the user
does not enter an expression within the next 60 seconds.

> (input-port-timeout-set! (repl-input-port) 60)
>
*** EOF again to exit

14.5 Character-ports

14.5.1 Character-port settings

The following is a list of port settings that are valid for character-ports.

• readtable: readtable

This setting determines the readtable attached to the character-port. To set each direc-
tion separately the keywords input-readtable: and output-readtable: must
be used instead of readtable: . Readtables control the external textual representa-
tion of Scheme objects, that is the encoding of Scheme objects using characters. The
behavior of the read procedure depends on the port’s input-readtable and the behav-
ior of the procedures write , pretty-print , and related procedures is affected by
the port’s output-readtable. The default value of this setting is the value bound to the
parameter object current-readtable .

• output-width: positive-integer

This setting indicates the width of the character output-port in number of characters.
This information is used by the pretty-printer. The default value of this setting is 80.

Chapter 14: I/O and ports 103

14.5.2 Character-port operations

[procedure](input-port-line port)
[procedure](input-port-column port)
[procedure](output-port-line port)
[procedure](output-port-column port)

The current character location of a character input-port is the location of the next
character to read. The current character location of a character output-port is the
location of the next character to write. Location is denoted by a line number (the
first line is line 1) and a column number, that is the location on the current line (the
first column is column 1). The procedures input-port-line and input-port-
column return the line location and the column location respectively of the character
input-port port. The procedures output-port-line and output-port-column
return the line location and the column location respectively of the character output-
port port.
For example:

> (call-with-output-string
’()
(lambda (p)

(display " abc \ n123def " p)
(write (list (output-port-line p) (output-port-column p))

p)))
"abc\n123def(2 7)"

[procedure](output-port-width port)
This procedure returns the width, in characters, of the character output-port port.
The value returned is the port’s output-width setting.
For example:

> (output-port-width (repl-output-port))
80

[procedure](read-char [port])
This procedure reads the character input-port port and returns the character at the
current character location and advances the current character location to the next
character, unless the port is already at end-of-file in which case read-char returns
the end-of-file object. If it is not specified, port defaults to the current input-port.
For example:

> (call-with-input-string
" some text "
(lambda (p)

(let ((a (read-char p))) (list a (read-char p)))))
(#\s #\o)
> (call-with-input-string "" read-char)
#!eof

[procedure](peek-char [port])
This procedure returns the same result as read-char but it does not advance the
current character location of the input-port port. If it is not specified, port defaults
to the current input-port.
For example:

Chapter 14: I/O and ports 104

> (call-with-input-string
" some text "
(lambda (p)

(let ((a (peek-char p))) (list a (read-char p)))))
(#\s #\s)
> (call-with-input-string "" peek-char)
#!eof

[procedure](write-char char [port])
This procedure writes the character char to the character output-port port and ad-
vances the current character location of that output-port. The value returned is
unspecified. If it is not specified, port defaults to the current output-port.

For example:
> (write-char # \ =)
=>

[procedure](read-line [port [separator [include-separator?]]])
This procedure reads characters from the character input-port port until a specific
separator or the end-of-file is encountered and returns a string containing the sequence
of characters read. The separator is included at the end of the string only if it was
the last character read and include-separator? is not #f . The separator must be a
character or #f (in which case all the characters until the end-of-file are read). If it is
not specified, port defaults to the current input-port. If it is not specified, separator
defaults to #\newline . If it is not specified, include-separator? defaults to #f .

For example:
> (define (split sep)

(lambda (str)
(call-with-input-string

str
(lambda (p)

(read-all p (lambda (p) (read-line p sep)))))))
> ((split # \ ,) " a,b,c ")
("a" "b" "c")
> (map (split # \ ,)

(call-with-input-string " 1,2,3 \ n4,5 "
(lambda (p) (read-all p read-line))))

(("1" "2" "3") ("4" "5"))

[procedure](read-substring string start end [port])
[procedure](write-substring string start end [port])

These procedures support bulk character I/O. The part of the string string starting
at index start and ending just before index end is used as a character buffer that
will be the target of read-substring or the source of the write-substring .
Up to end-start characters will be transferred. The number of characters trans-
ferred, possibly zero, is returned by these procedures. Fewer characters will be read
by read-substring if an end-of-file is read, or a timeout occurs before all the
requested characters are transferred and the timeout thunk returns #f (see the pro-
cedure input-port-timeout-set!). Fewer characters will be written by write-
substring if a timeout occurs before all the requested characters are transferred and
the timeout thunk returns #f (see the procedure output-port-timeout-set!).

Chapter 14: I/O and ports 105

If it is not specified, port defaults to the current input-port and current output-port
respectively.

For example:
> (define s (make-string 10 # \ x))
> (read-substring s 2 5)123456789
3
> 456789
> s
"xx123xxxxx"

14.6 Byte-ports

14.6.1 Byte-port settings

The following is a list of port settings that are valid for byte-ports.

• char-encoding: encoding

This setting controls the character encoding of the byte-port. For bidirectional byte-
ports, the character encoding for input and output is set. To set each direction sepa-
rately the keywords input-char-encoding: and output-char-encoding: must
be used instead of char-encoding: . The default value of this setting is operating
system dependent, but this can be overriden through the runtime options (see Chap-
ter 4 [Runtime options], page 17). The following encodings are supported:

latin1 LATIN1 character encoding. Each character is encoded by a single
byte. Only Unicode characters with a code in the range 0 to 255
are allowed.

ascii ASCII character encoding. Each character is encoded by a single
byte. In principle only Unicode characters with a code in the range
0 to 127 are allowed but most types of ports treat this exactly like
latin1 .

ucs2 UCS2 character encoding. Each character is encoded by 16 bits,
i.e. two bytes. The 16 bits may be encoded using little-endian
encoding or big-endian encoding. If the port is an input-port and
the first two bytes read are a BOM (“Byte Order Mark” character
with hexadecimal code FEFF) then the BOM will be discarded and
the endianness will be set accordingly, otherwise the endianness
depends on the operating system and how the Gambit runtime was
compiled. If the port is an output-port then a BOM will be output
at the beginning of the stream and the endianness depends on the
operating system and how the Gambit runtime was compiled.

ucs2le UCS2 character encoding with little-endian endianness. It is like
ucs2 except the endianness is set to little-endian and there is no
BOM processing. If a BOM is needed at the beginning of the stream
then it must be explicitly written.

ucs2be UCS2 character encoding with big-endian endianness. It is like
ucs2le except the endianness is set to big-endian.

Chapter 14: I/O and ports 106

ucs4 UCS4 character encoding. Each character is encoded by 32 bits,
i.e. four bytes. The 32 bits may be encoded using little-endian
encoding or big-endian encoding. If the port is an input-port and
the first four bytes read are a BOM (“Byte Order Mark” character
with hexadecimal code 0000FEFF) then the BOM will be discarded
and the endianness will be set accordingly, otherwise the endianness
depends on the operating system and how the Gambit runtime was
compiled. If the port is an output-port then a BOM will be output
at the beginning of the stream and the endianness depends on the
operating system and how the Gambit runtime was compiled.

ucs4le UCS4 character encoding with little-endian endianness. It is like
ucs4 except the endianness is set to little-endian and there is no
BOM processing. If a BOM is needed at the beginning of the stream
then it must be explicitly written.

ucs4be UCS4 character encoding with big-endian endianness. It is like
ucs4le except the endianness is set to big-endian.

native Native character encoding using one byte per character. Currently
this is treated the same as latin1 .

• eol-encoding: encoding

This setting controls the end-of-line encoding of the byte-port. To set each direction
separately the keywords input-eol-encoding: and output-eol-encoding:
must be used instead of eol-encoding: . The default value of this setting is
operating system dependent, but this can be overriden through the runtime options
(see Chapter 4 [Runtime options], page 17). Note that for output-ports the end-of-line
encoding is applied before the character encoding, and for input-ports it is applied
after. The following encodings are supported:

lf For an output-port, writing a #\newline character outputs a
#\linefeed character to the stream (Unicode character code
10). For an input-port, a #\newline character is read when
a #\linefeed character is encountered on the stream. Note
that #\linefeed and #\newline are two names for the same
character, so this end-of-line encoding is actually the identity
function. Text files created by UNIX applications typically use
this end-of-line encoding.

cr For an output-port, writing a #\newline character outputs
a #\return character to the stream (Unicode character code
10). For an input-port, a #\newline character is read when a
#\linefeed character or a #\return character is encountered
on the stream. Text files created by Classic Mac OS applications
typically use this end-of-line encoding.

cr-lf For an output-port, writing a #\newline character outputs to the
stream a #\return character followed by a #\linefeed charac-
ter. For an input-port, a #\newline character is read when a
#\linefeed character or a #\return character is encountered

Chapter 14: I/O and ports 107

on the stream. Moreover, if this character is immediately followed
by the opposite character (#\linefeed followed by #\return or
#\return followed by #\linefeed) then the second character is
ignored. In other words, all four possible end-of-line encodings are
read as a single #\newline character. Text files created by DOS
and Microsoft Windows applications typically use this end-of-line
encoding.

14.6.2 Byte-port operations

[procedure](read-byte [port])
This procedure reads the byte input-port port and returns the byte at the current
byte location and advances the current byte location to the next byte, unless the port
is already at end-of-file in which case read-byte returns the end-of-file object. If it
is not specified, port defaults to the current input-port.

This procedure must be called before any use of the port in a character input operation
(i.e. a call to the procedures read , read-char , peek-char , etc) because otherwise
the character-stream and byte-stream may be out of sync due to the port buffering.

For example:
> (call-with-input-u8vector

’#u8(11 22 33 44)
(lambda (p)

(let ((a (read-byte p))) (list a (read-byte p)))))
(11 22)
> (call-with-input-u8vector ’#u8() read-byte)
#!eof

[procedure](write-byte n [port])
This procedure writes the byte n to the byte output-port port and advances the
current byte location of that output-port. The value returned is unspecified. If it is
not specified, port defaults to the current output-port.

For example:
> (call-with-output-u8vector ’() (lambda (p) (write-byte 33 p)))
#u8(33)

[procedure](read-subu8vector u8vector start end [port])
[procedure](write-subu8vector u8vector start end [port])

These procedures support bulk byte I/O. The part of the u8vector u8vector starting
at index start and ending just before index end is used as a byte buffer that will be
the target of read-subu8vector or the source of the write-subu8vector . Up
to end-start bytes will be transferred. The number of bytes transferred, possibly zero,
is returned by these procedures. Fewer bytes will be read by read-subu8vector
if an end-of-file is read, or a timeout occurs before all the requested bytes are trans-
ferred and the timeout thunk returns #f (see the procedure input-port-timeout-
set!). Fewer bytes will be written by write-subu8vector if a timeout occurs
before all the requested bytes are transferred and the timeout thunk returns #f (see
the procedure output-port-timeout-set!). If it is not specified, port defaults
to the current input-port and current output-port respectively.

Chapter 14: I/O and ports 108

The procedure read-subu8vector must be called before any use of the port in a
character input operation (i.e. a call to the procedures read , read-char , peek-
char , etc) because otherwise the character-stream and byte-stream may be out of
sync due to the port buffering.
For example:

> (define v (make-u8vector 10))
> (read-subu8vector v 2 5)123456789
3
> 456789
> v
#u8(0 0 49 50 51 0 0 0 0 0)

14.7 Device-ports

14.7.1 Filesystem devices

[procedure](open-file path-or-settings)
[procedure](open-input-file path-or-settings)
[procedure](open-output-file path-or-settings)
[procedure](call-with-input-file path-or-settings proc)
[procedure](call-with-output-file path-or-settings proc)
[procedure](with-input-from-file path-or-settings thunk)
[procedure](with-output-to-file path-or-settings thunk)

All of these procedures create a port to interface to a byte-stream device (such as
a file, console, serial port, named pipe, etc) whose name is given by a path of the
filesystem. The direction: setting will default to the value input for the pro-
cedures open-input-file , call-with-input-file and with-input-from-
file , to the value output for the procedures open-output-file , call-with-
output-file and with-output-to-file , and to the value input-output for
the procedure open-file . The procedures open-file , open-input-file and
open-output-file return the port that is created. The procedures call-with-
input-file and call-with-output-file call the procedure proc with the port
as single argument, and then return the value(s) of this call after closing the port.
The procedures with-input-from-file and with-output-to-file dynami-
cally bind the current input-port and current output-port respectively to the port
created for the duration of a call to the procedure thunk with no argument. The
value(s) of the call to thunk are returned after closing the port.
The first argument of these procedures is either a string denoting a filesystem path
or a list of port settings which must contain a path: setting. Here are the settings
allowed in addition to the generic settings of byte-ports:
• path: string

This setting indicates the location of the file in the filesystem. There is no default
value for this setting.

• append: (#f | #t)
This setting controls whether output will be added to the end of the file. This is
useful for writing to log files that might be open by more than one process. The
default value of this setting is #f .

Chapter 14: I/O and ports 109

• create: (#f | #t | maybe)

This setting controls whether the file will be created when it is opened. A setting
of #f requires that the file exist (otherwise an exception is raised). A setting
of #t requires that the file does not exist (otherwise an exception is raised). A
setting of maybe will create the file if it does not exist. The default value of this
setting is maybe for output-ports and #f for input-ports and bidirectional ports.

• permissions: 12-bit-exact-integer

This setting controls the UNIX permissions that will be attached to the file if it
is created.

• truncate: (#f | #t)

This setting controls whether the file will be truncated when it is opened. For
input-ports, the default value of this setting is #f . For output-ports, the default
value of this setting is #t when the append: setting is #f , and #f otherwise.

For example:
> (with-output-to-file

(list path: " nofile "
create: #f)

(lambda ()
(display " hello world! \ n")))

*** ERROR IN (console)@1.1 -- No such file or directory
(with-output-to-file ’(path: "nofile" create: #f) ’#<procedure #2>)

14.7.2 Process devices

[procedure](open-process path-or-settings)
This procedure starts a new process and returns a port that allows communication
with that process on its standard input and standard output. The default value of
the direction: setting is input-output , i.e. the Scheme program can write to
the process’ standard input and can read from the process’ standard output.

The first argument of this procedure is either a string denoting a filesystem path of
an executable program or a list of port settings which must contain a path: setting.
Here are the settings allowed in addition to the generic settings of byte-ports:

• path: string

This setting indicates the location of the executable program in the filesystem.
There is no default value for this setting.

• arguments: list-of-strings

This setting indicates the string arguments that are passed to the program. The
default value of this setting is the empty list (i.e. no arguments).

• environment: list-of-strings

This setting indicates the set of environment variable bindings that the process
receives. Each element of the list is a string of the form “VAR=VALUE”, where
VARis the name of the variable and VALUEis its binding. If list-of-strings is #f ,
the process inherits the environment variable bindings of the Scheme program.
The default value of this setting is #f .

Chapter 14: I/O and ports 110

• stderr-redirection: (#f | #t)

This setting indicates how the standard error of the process is redirected. A
setting of #t will redirect the standard error to the standard output (i.e. all
output to standard error can be read from the process-port). A setting of #f
will leave the standard error as-is, which typically results in error messages being
output to the console. The default value of this setting is #f .

• pseudo-terminal: (#f | #t)

This setting indicates what type of device will be bound to the process’ standard
input and standard output. A setting of #t will use a pseudo-terminal device
(this is a device that behaves like a tty device even though there is no real
terminal or user directly involved). A setting of #f will use a pair of pipes. The
difference is important for programs which behave differently when they are used
interactively, for example shells. The default value of this setting is #f .

For example:
> (define p (open-process (list path: " /bin/ls "

arguments: ’(" ../examples "))))
> (read-line p)
"complex"
> (read-line p)
"README"
> (close-port p)
> (define p (open-process " /usr/bin/dc "))
> (display " 2 100 ˆ p\ n" p)
> (force-output p)
> (read-line p)
"1267650600228229401496703205376"

14.7.3 Network devices

[procedure](open-tcp-client settings)
This procedure opens a network connection to a TCP/IP server and returns a tcp-
client-port (a subtype of device-port) that represents this connection and allows
communication with that server. The default value of the direction: setting is
input-output , i.e. the Scheme program can send information to the server and
receive information from the server. The sending direction can be “shutdown” using
the close-output-port procedure and the receiving direction can be “shutdown”
using the close-input-port procedure. The close-port procedure closes both
directions of the connection.

The first argument of this procedure is a list of port settings which must contain
a server-address: setting and a port-number: setting. Here are the settings
allowed in addition to the generic settings of byte-ports:

• server-address: string-or-u8vector

This setting indicates the internet address of the server. It can be a string
denoting a host name, which will be translated to an IP address by the host-
info procedure, or a 4 or 16 element u8vector which contains the 32-bit IPv4
or 128-bit IPv6 address respectively. There is no default value for this setting.

Chapter 14: I/O and ports 111

• port-number: 16-bit-exact-integer

This setting indicates the IP port-number of the server to connect to (e.g. 80
for the standard HTTP server, 23 for the standard telnet server). There is no
default value for this setting.

• keep-alive: (#f | #t)

This setting controls the use of the “keep alive” option on the connection. The
“keep alive” option will periodically send control packets on otherwise idle net-
work connections to ensure that the server host is active and reachable. The
default value of this setting is #f .

• coalesce: (#f | #t)

This setting controls the use of TCP’s “Nagle algorithm” which reduces the
number of small packets by delaying their transmission and coalescing them into
larger packets. A setting of #t will coalesce small packets into larger ones. A
setting of #f will transmit packets as soon as possible. The default value of this
setting is #f . Note that this setting does not affect the buffering of the port.

Here is an example of the client-side code that opens a connection to an HTTP server
on port 8080 on the same computer (for the server-side code see the example for the
procedure open-tcp-server):

> (define p (open-tcp-client (list server-address: ’#u8(127 0 0 1)
port-number: 8080
eol-encoding: ’cr-lf)))

> p
#<input-output-port #2 (tcp-client #u8(127 0 0 1) 8080)>
> (display " GET / HTTP/1.1 \ n" p)
> (force-output p)
> (read-line p)
"<HTML>"

[procedure](open-tcp-server port-number-or-settings)
This procedure sets up a socket to accept network connection requests from clients
and returns a tcp-server-port from which network connections to clients are obtained.
Tcp-server-ports are a direct subtype of object-ports (i.e. they are not character-
ports) and are input-ports. Reading from a tcp-server-port with the read procedure
will block until a network connection request is received from a client. The read
procedure will then return a tcp-client-port (a subtype of device-port) that represents
this connection and allows communication with that client. Closing a tcp-server-
port with either the close-input-port or close-port procedures will cause the
network subsystem to stop accepting connections on that socket.

The first argument of this procedure is an IP port-number (16-bit nonnegative ex-
act integer) or a list of port settings which must contain a port-number: setting.
Below is a list of the settings allowed in addition to the settings keep-alive: and
coalesce: allowed by the open-tcp-client procedure and the generic settings
of byte-ports. The settings which are not listed below apply to the tcp-client-port
that is returned by read when a connection is accepted and have the same meaning
as if they were used in a call to the open-tcp-client procedure.

Chapter 14: I/O and ports 112

• port-number: 16-bit-exact-integer

This setting indicates the IP port-number assigned to the socket which accepts
connection requests from clients. So called “well-known ports”, which are re-
served for standard services, have a port-number below 1024 and can only be
assigned to a socket by a process with superuser priviledges (e.g. 80 for the
HTTP service, 23 for the telnet service). No special priviledges are needed to
assign higher port-numbers to a socket. There is no default value for this setting.

• backlog: positive-exact-integer

This setting indicates the maximum number of connection requests that can be
waiting to be accepted by a call to read (technically it is the value passed as the
second argument of the UNIX listen() function). The default value of this
setting is 128.

• reuse-address: (#f | #t)

This setting controls whether it is possible to assign a port-number that is cur-
rently active. Note that when a server process terminates, the socket it was using
to accept connection requests does not become inactive immediately. Instead it
remains active for a few minutes to ensure clean termination of the connections.
A setting of #f will cause an exception to be raised in that case. A setting of #t
will allow a port-number to be used even if it is active. The default value of this
setting is #t .

Here is an example of the server-side code that accepts connections on port 8080 (for
the client-side code see the example for the procedure open-tcp-client):

> (define s (open-tcp-server (list port-number: 8080
eol-encoding: ’cr-lf)))

> (define p (read s)) ; blocks until client connects
> p
#<input-output-port #2 (tcp-client 8080)>
> (read-line p)
"GET / HTTP/1.1"
> (display "< HTML>\ n" p)
> (force-output p)

14.8 Directory-ports

[procedure](open-directory path-or-settings)
This procedure opens a directory of the filesystem for reading its entries and returns
a directory-port from which the entries can be enumerated. Directory-ports are a
direct subtype of object-ports (i.e. they are not character-ports) and are input-ports.
Reading from a directory-port with the read procedure returns the next file name
in the directory as a string. The end-of-file object is returned when all the file names
have been enumerated. Another way to get the list of all files in a directory is the
directory-files procedure which returns a list of the files in the directory. The
advantage of using directory-ports is that it allows iterating over the files in a directory
in constant space, which is interesting when the number of files in the directory is
not known in advance and may be large. Note that the order in which the names are
returned is operating-system dependent.

Chapter 14: I/O and ports 113

The first argument of this procedure is either a string denoting a filesystem path to a
directory or a list of port settings which must contain a path: setting. Here are the
settings allowed in addition to the generic settings of object-ports:
• path: string

This setting indicates the location of the directory in the filesystem. There is no
default value for this setting.

• ignore-hidden: (#f | #t | dot-and-dot-dot)
This setting controls whether hidden-files will be returned. Under UNIX and
Mac OS X hidden-files are those that start with a period (such as ‘. ’, ‘.. ’, and
‘.profile ’). Under Microsoft Windows hidden files are the ‘. ’ and ‘.. ’ entries
and the files whose “hidden file” attribute is set. A setting of #f will enumerate
all the files. A setting of #t will only enumerate the files that are not hidden. A
setting of dot-and-dot-dot will enumerate all the files except for the ‘. ’ and
‘.. ’ hidden files. The default value of this setting is #t .

For example:
> (let ((p (open-directory (list path: " ../examples "

ignore-hidden: #f))))
(let loop ()

(let ((fn (read p)))
(if (string? fn)

(begin
(pp (path-expand fn))
(loop)))))

(close-input-port p))
"/u/feeley/examples/."
"/u/feeley/examples/.."
"/u/feeley/examples/complex"
"/u/feeley/examples/README"
"/u/feeley/examples/simple"
> (define x (open-directory " ../examples "))
> (read-all x)
("complex" "README" "simple")

14.9 Vector-ports

[procedure](open-vector [vector-or-settings])
[procedure](open-input-vector [vector-or-settings])
[procedure](open-output-vector [vector-or-settings])
[procedure](call-with-input-vector vector-or-settings proc)
[procedure](call-with-output-vector vector-or-settings proc)
[procedure](with-input-from-vector vector-or-settings thunk)
[procedure](with-output-to-vector vector-or-settings thunk)

Vector-ports represent streams of Scheme objects. They are a direct subtype of object-
ports (i.e. they are not character-ports). All of these procedures create vector-ports
that are either unidirectional or bidirectional. The direction: setting will default
to the value input for the procedures open-input-vector , call-with-input-
vector and with-input-from-vector , to the value output for the procedures
open-output-vector , call-with-output-vector and with-output-to-
vector , and to the value input-output for the procedure open-vector . Bidi-

Chapter 14: I/O and ports 114

rectional vector-ports behave like FIFOs: data written to the port is added to the end
of the stream that is read. It is only when a bidirectional vector-port’s output-side
is closed with a call to the close-output-port procedure that the stream’s end
is known (when the stream’s end is reached, reading the port returns the end-of-file
object).
The procedures open-vector , open-input-vector and open-output-
vector return the port that is created. The procedures call-with-input-
vector and call-with-output-vector call the procedure proc with the port
as single argument, and then return the value(s) of this call after closing the port.
The procedures with-input-from-vector and with-output-to-vector
dynamically bind the current input-port and current output-port respectively to the
port created for the duration of a call to the procedure thunk with no argument.
The value(s) of the call to thunk are returned after closing the port.
The first argument of these procedures is either a vector of the elements used to
initialize the stream or a list of port settings. If it is not specified, the argument
of the open-vector , open-input-vector , and open-output-vector proce-
dures defaults to an empty list of port settings. Here are the settings allowed in
addition to the generic settings of object-ports:
• init: vector

This setting indicates the initial content of the stream. The default value of this
setting is an empty vector.

• permanent-close: (#f | #t)
This setting controls whether a call to the procedures close-output-port
will close the output-side of a bidirectional vector-port permanently or not. A
permanently closed bidirectional vector-port whose end-of-file has been reached
on the input-side will return the end-of-file object for all subsequent calls to the
read procedure. A non-permanently closed bidirectional vector-port will return
to its opened state when its end-of-file is read. The default value of this setting
is #t .

For example:
> (define p (open-vector))
> (write 1 p)
> (write 2 p)
> (write 3 p)
> (read p)
1
> (read p)
2
> (close-output-port p)
> (read p)
3
> (read p)
#!eof

[procedure](open-vector-pipe [vector-or-settings1
[vector-or-settings2]])

The procedure open-vector-pipe creates two vector-ports and returns these two
ports. The two ports are interrelated as follows: the first port’s output-side is con-

Chapter 14: I/O and ports 115

nected to the second port’s input-side and the first port’s input-side is connected
to the second port’s output-side. The value vector-or-settings1 is used to setup the
first vector-port and vector-or-settings2 is used to setup the second vector-port. The
same settings as for open-vector are allowed. The default direction: setting is
input-output (i.e. a bidirectional port is created). If it is not specified vector-or-
settings1 defaults to the empty list. If it is not specified vector-or-settings2 defaults
to vector-or-settings1 but with the init: setting set to the empty vector and with
the input and output settings exchanged (e.g. if the first port is an input-port then
the second port is an output-port, if the first port’s input-side is non-buffered then
the second port’s output-side is non-buffered).

For example:
> (define (server op)

(receive (c s) (open-vector-pipe) ; client-side and server-side ports
(thread-start!

(make-thread
(lambda ()

(let loop ()
(let ((request (read s)))

(if (not (eof-object? request))
(begin

(write (op request) s)
(newline s)
(force-output s)
(loop))))))))

c))
> (define a (server (lambda (x) (expt 2 x))))
> (define b (server (lambda (x) (expt 10 x))))
> (write 100 a)
> (write 30 b)
> (read a)
1267650600228229401496703205376
> (read b)
1000000000000000000000000000000

[procedure](get-output-vector vector-port)
The procedure get-output-vector takes an output vector-port or a bidirectional
vector-port as argument and removes all the objects currently on the output-side,
returning them in a vector. The port remains open and subsequent output to the
port and calls to the procedure get-output-vector are possible.

For example:
> (define p (open-vector ’#(1 2 3)))
> (write 4 p)
> (get-output-vector p)
#(1 2 3 4)
> (write 5 p)
> (write 6 p)
> (get-output-vector p)
#(5 6)

14.10 String-ports

[procedure](open-string [string-or-settings])

Chapter 14: I/O and ports 116

[procedure](open-input-string [string-or-settings])
[procedure](open-output-string [string-or-settings])
[procedure](call-with-input-string string-or-settings proc)
[procedure](call-with-output-string string-or-settings proc)
[procedure](with-input-from-string string-or-settings thunk)
[procedure](with-output-to-string string-or-settings thunk)
[procedure](open-string-pipe [string-or-settings1

[string-or-settings2]])
[procedure](get-output-string string-port)

String-ports represent streams of characters. They are a direct subtype of character-
ports. These procedures are the string-port analog of the procedures specified in the
vector-ports section. Note that these procedures are a superset of the procedures
specified in the “Basic String Ports SRFI” (SRFI 6).

[procedure](object->string obj [n])
This procedure converts the object obj to its external representation and returns it
in a string. The parameter n specifies the maximal width of the resulting string. If
the external representation is wider than n, the resulting string will be truncated to
n characters and the last 3 characters will be set to periods. Note that the current
readtable is used.

14.11 U8vector-ports

[procedure](open-u8vector [u8vector-or-settings])
[procedure](open-input-u8vector [u8vector-or-settings])
[procedure](open-output-u8vector [u8vector-or-settings])
[procedure](call-with-input-u8vector u8vector-or-settings

proc)
[procedure](call-with-output-u8vector u8vector-or-settings

proc)
[procedure](with-input-from-u8vector u8vector-or-settings

thunk)
[procedure](with-output-to-u8vector u8vector-or-settings

thunk)
[procedure](open-u8vector-pipe [u8vector-or-settings1

[u8vector-or-settings2]])
[procedure](get-output-u8vector u8vector-port)

U8vector-ports represent streams of bytes. They are a direct subtype of byte-ports.
These procedures are the u8vector-port analog of the procedures specified in the
vector-ports section.

14.12 Parameter objects related to I/O

[procedure](current-input-port [new-value])
[procedure](current-output-port [new-value])
[procedure](current-error-port [new-value])

Chapter 14: I/O and ports 117

[procedure](current-readtable [new-value])
These procedures are parameter objects which represent respectively: the current
input-port, the current output-port, the current error-port, and the current readtable.

14.13 Directories

[procedure](create-directory path-or-settings)
[procedure](create-fifo path-or-settings)
[procedure](create-link source-path destination-path)
[procedure](create-symbolic-link source-path destination-path)
[procedure](rename-file source-path destination-path)
[procedure](copy-file source-path destination-path)
[procedure](delete-file path)
[procedure](delete-directory path)
[procedure](directory-files path-or-settings)

[procedure](repl-input-port)
[procedure](repl-output-port)
[procedure](console-port)

[procedure](current-exception-handler [new-value])
[procedure](current-user-interrupt-handler [new-value])

TODO!

14.14 Tty-ports

[procedure](tty? port)
[procedure](tty-mode-set! port allow-special? input-echo?

input-raw output-raw [speed])
[procedure](tty-type-set! port term-type emacs-bindings)
[procedure](tty-text-attributes-set! port input output)
[procedure](tty-history port)
[procedure](tty-history-set! port history)
[procedure](tty-max-history-length-set! port max-length)
[procedure](tty-paren-balance-duration-set! port duration)
[procedure](tty-mode-set! port mode)

TODO!

Chapter 15: Lexical syntax and readtables 118

15 Lexical syntax and readtables

15.1 Readtables

Readtables control the external textual representation of Scheme objects, that is the encod-
ing of Scheme objects using characters. Readtables affect the behavior of the reader (i.e.
the read procedure and the parser used by the load procedure and the interpreter and
compiler) and the printer (i.e. the procedures write , display , pretty-print , and pp ,
and the procedure used by the REPL to print results). To preserve write/read invariance
the printer and reader must be using compatible readtables. For example a symbol which
contains upper case letters will be printed with special escapes if the readtable indicates
that the reader is case-insensitive.

Readtables are immutable records whose fields specify various textual representation
aspects. There are accessor procedures to retrieve the content of specific fields. There are
also functional update procedures that create a copy of a readtable, with a specific field set
to a new value.

[procedure](readtable? obj)
This procedure returns #t when obj is a readtable and #f otherwise.
For example:

> (readtable? (current-readtable))
#t
> (readtable? 123)
#f

[procedure](readtable-case-conversion? readtable)
[procedure](readtable-case-conversion?-set readtable

new-value)
The procedure readtable-case-conversion? returns the content of the
‘case-conversion? ’ field of readtable. When the content of this field is #f , the
reader preserves the case of symbols and keyword objects that are read (i.e. Ice and
ice are distinct symbols). When the content of this field is the symbol upcase , the
reader converts lowercase letters to uppercase when reading symbols and keywords
(i.e. Ice is read as the symbol (string->symbol "ICE")). Otherwise the reader
converts uppercase letters to lowercase when reading symbols and keywords (i.e.
Ice is read as the symbol (string->symbol "ice")).
The procedure readtable-case-conversion?-set returns a copy of readtable
where only the ‘case-conversion? ’ field has been changed to new-value.
For example:

> (output-port-readtable-set!
(repl-output-port)
(readtable-case-conversion?-set

(output-port-readtable (repl-output-port))
#f))

> (input-port-readtable-set!
(repl-input-port)
(readtable-case-conversion?-set

(input-port-readtable (repl-input-port))

Chapter 15: Lexical syntax and readtables 119

#f))
> ’Ice
Ice
> (input-port-readtable-set!

(repl-input-port)
(readtable-case-conversion?-set

(input-port-readtable (repl-input-port))
#t))

> ’Ice
ice
> (input-port-readtable-set!

(repl-input-port)
(readtable-case-conversion?-set

(input-port-readtable (repl-input-port))
’upcase))

> ’Ice
ICE

[procedure](readtable-keywords-allowed? readtable)
[procedure](readtable-keywords-allowed?-set readtable

new-value)
The procedure readtable-keywords-allowed? returns the content of the
‘keywords-allowed? ’ field of readtable. When the content of this field is #f ,
the reader does not recognize keyword objects (i.e. :foo and foo: are read as
the symbols (string->symbol ":foo") and (string->symbol "foo:")
respectively). When the content of this field is the symbol prefix , the reader
recognizes keyword objects that start with a colon, as in Common Lisp (i.e. :foo
is read as the keyword (string->keyword "foo")). Otherwise the reader
recognizes keyword objects that end with a colon, as in DSSSL (i.e. foo: is read as
the symbol (string->symbol "foo")).

The procedure readtable-keywords-allowed?-set returns a copy of readtable
where only the ‘keywords-allowed? ’ field has been changed to new-value.

For example:
> (input-port-readtable-set!

(repl-input-port)
(readtable-keywords-allowed?-set

(input-port-readtable (repl-input-port))
#f))

> (map keyword? ’(foo :foo foo:))
(#f #f #f)
> (input-port-readtable-set!

(repl-input-port)
(readtable-keywords-allowed?-set

(input-port-readtable (repl-input-port))
#t))

> (map keyword? ’(foo :foo foo:))
(#f #f #t)
> (input-port-readtable-set!

(repl-input-port)
(readtable-keywords-allowed?-set

(input-port-readtable (repl-input-port))
’prefix))

> (map keyword? ’(foo :foo foo:))
(#f #t #f)

Chapter 15: Lexical syntax and readtables 120

[procedure](readtable-sharing-allowed? readtable)
[procedure](readtable-sharing-allowed?-set readtable

new-value)
The procedure readtable-sharing-allowed? returns the content of the
‘sharing-allowed? ’ field of readtable. The reader recognizes the #n# and
#n=datum notation for circular structures and the printer uses this notation if and
only if the content of the ‘sharing-allowed? ’ field is not #f . Moreover when the
content of the ‘sharing-allowed? ’ field is the symbol serialize , the printer
uses a special external representation that the reader understands and that extends
write/read invariance to the following types: records, procedures, and continuations.
Note that an object can be serialized and deserialized if and only if all of its
components are serializable. In particular a continuation that contains device-ports
for the current input-port or current output-port is not serializable because
device-ports are not serializable (this problem can be overcome by dynamically
binding these ports to string-ports, or any port that can be serialized, before the
continuation is captured).

The procedure readtable-sharing-allowed?-set returns a copy of readtable
where only the ‘sharing-allowed? ’ field has been changed to new-value.

For example:
> (define (wr obj allow?)

(call-with-output-string
’()
(lambda (p)

(output-port-readtable-set!
p
(readtable-sharing-allowed?-set

(output-port-readtable p)
allow?))

(write obj p))))
> (define (rd str allow?)

(call-with-input-string
str
(lambda (p)

(input-port-readtable-set!
p
(readtable-sharing-allowed?-set

(input-port-readtable p)
allow?))

(read p))))
> (define x (list 1 2 3))
> (set-car! (cdr x) (cddr x))
> (wr x #f)
"(1 (3) 3)"
> (wr x #t)
"(1 #0=(3) . #0#)"
> (define y (rd (wr x #t) #t))
> y
(1 (3) 3)
> (eq? (cadr y) (cddr y))
#t
> (define f #f)
> (let ((free (expt 2 10)))

(set! f (lambda (x) (+ x free))))

Chapter 15: Lexical syntax and readtables 121

> (define s (wr f ’serialize))
> (string-length s)
4198
> (define g (rd s ’serialize))
> (eq? f g)
#f
> (g 4)
1028

[procedure](readtable-eval-allowed? readtable)
[procedure](readtable-eval-allowed?-set readtable new-value)

The procedure readtable-eval-allowed? returns the content of the
‘eval-allowed? ’ field of readtable. The reader recognizes the #. expression
notation for read-time evaluation if and only if the content of the ‘eval-allowed? ’
field is not #f .
The procedure readtable-eval-allowed?-set returns a copy of readtable
where only the ‘eval-allowed? ’ field has been changed to new-value.
For example:

> (input-port-readtable-set!
(repl-input-port)
(readtable-eval-allowed?-set

(input-port-readtable (repl-input-port))
#t))

> ’(5 plus 7 is #.(+ 5 7))
(5 plus 7 is 12)
> ’(buf = #.(make-u8vector 25))
(buf = #u8(0 0))

[procedure](readtable-max-write-level readtable)
[procedure](readtable-max-write-level-set readtable new-value)

The procedure readtable-max-write-level returns the content of the
‘max-write-level ’ field of readtable. The printer will display an ellipsis for the
elements of lists and vectors that are nested deeper than this level.
The procedure readtable-max-write-level-set returns a copy of readtable
where only the ‘max-write-level ’ field has been changed to new-value, which
must be an nonnegative fixnum.
For example:

> (define (wr obj n)
(call-with-output-string

’()
(lambda (p)

(output-port-readtable-set!
p
(readtable-max-write-level-set

(output-port-readtable p)
n))

(write obj p))))
> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 3)
"(a #(b (c c) #u8(9 9 9) b) a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 2)
"(a #(b (...) #u8(...) b) a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 1)
"(a #(...) a)"

Chapter 15: Lexical syntax and readtables 122

> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 0)
"(...)"
> (wr ’hello 0)
"hello"

[procedure](readtable-max-write-length readtable)
[procedure](readtable-max-write-length-set readtable

new-value)
The procedure readtable-max-write-length returns the content of the
‘max-write-length ’ field of readtable. The printer will display an ellipsis for the
elements of lists and vectors that are at an index beyond that length.

The procedure readtable-max-write-length-set returns a copy of readtable
where only the ‘max-write-length ’ field has been changed to new-value, which
must be an nonnegative fixnum.

For example:
> (define (wr obj n)

(call-with-output-string
’()
(lambda (p)

(output-port-readtable-set!
p
(readtable-max-write-length-set

(output-port-readtable p)
n))

(write obj p))))
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 4)
"(a #(b (c c) #u8(9 9 9) b) . a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 3)
"(a #(b (c c) #u8(9 9 9) ...) . a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 2)
"(a #(b (c c) ...) . a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 1)
"(a ...)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 0)
"(...)"

[procedure](readtable-start-syntax readtable)
[procedure](readtable-start-syntax-set readtable new-value)

The procedure readtable-start-syntax returns the content of the
‘start-syntax ’ field of readtable. The reader uses this field to determine in which
syntax to start parsing the input. When the content of this field is the symbol six ,
the reader starts in the infix syntax. Otherwise the reader starts in the prefix syntax.

The procedure readtable-start-syntax-set returns a copy of readtable where
only the ‘start-syntax ’ field has been changed to new-value.

For example:
> (+ 2 3)
5
> (input-port-readtable-set!

(repl-input-port)
(readtable-start-syntax-set

(input-port-readtable (repl-input-port))
’six))

Chapter 15: Lexical syntax and readtables 123

> 2+3;
5
> exit();

15.2 Boolean syntax

Booleans are required to be followed by a delimiter (i.e. #f64() is not the boolean #f
followed by the number 64 and the empty list).

15.3 Character syntax

Characters are required to be followed by a delimiter (i.e. #\spaceballs is not the
character #\space followed by the symbol balls). The lexical syntax of characters is
extended to allow the following:

#\newline newline character (Unicode character 10)

#\space space character (Unicode character 32)

#\nul Unicode character 0

#\bel Unicode character 7

#\backspace Unicode character 8

#\tab Unicode character 9

#\linefeed Unicode character 10

#\vt Unicode character 11

#\page Unicode character 12

#\return Unicode character 13

#\rubout Unicode character 127

#\ n Unicode character n (n must start with a # character and it must repre-
sent an exact integer, for example #\#x20 is the space character, #\#d9
is the tab character, and #\#e1.2e2 is the lower case character “x”)

15.4 String syntax

The lexical syntax of strings is extended to allow the following escape codes:

\n newline character

\a Unicode character 7

\b Unicode character 8

\t Unicode character 9

\v Unicode character 11

\f Unicode character 12

\r Unicode character 13

\" "

Chapter 15: Lexical syntax and readtables 124

\\ \

\ ooo character encoded in octal (1 to 3 octal digits)

\x hh character encoded in hexadecimal (>= 1 hexadecimal digit)

15.5 Symbol syntax

The lexical syntax of symbols is extended to allow a leading and trailing vertical bar (e.g.
|a\|b"c:|). The symbol’s name corresponds verbatim to the characters between the
vertical bars except for escaped characters. The same escape sequences as for strings are
permitted except that ‘" ’ does not need to be escaped and ‘| ’ needs to be escaped (in other
words the function of the ‘" ’ and ‘| ’ characters is interchanged with respect to the string
syntax).

For example:
> (symbol- >string ’ | a\| b" c: |)
"a|b\"c:"

15.6 Keyword syntax

The lexical syntax of keywords is like symbols, but with a colon at the end (note that
this can be changed to a leading colon by setting the ‘keywords-allowed? ’ field of the
readtable to the symbol prefix). A colon by itself is not a keyword, it is a symbol. Vertical
bars can be used like symbols but the colon must be outside the vertical bars. Note that
the string returned by the keyword->string procedure does not include the colon.

For example:
> (keyword- >string ’foo:)
"foo"
> (map keyword? ’(| ab()cd: | | ab()cd | : : || :))
(#f #t #f #t)

15.7 Number syntax

The lexical syntax of the special inexact real numbers is as follows:

+inf. positive infinity

-inf. negative infinity

+nan. “not a number”

-0. negative zero (‘0. ’ is the positive zero)

15.8 Homogeneous vector syntax

Homogeneous vectors are vectors containing raw numbers of the same type (signed or
unsigned exact integers or inexact reals). There are 10 types of homogeneous vectors:
‘s8vector ’ (vector of 8 bit signed integers), ‘u8vector ’ (vector of 8 bit unsigned in-
tegers), ‘s16vector ’ (vector of 16 bit signed integers), ‘u16vector ’ (vector of 16 bit
unsigned integers), ‘s32vector ’ (vector of 32 bit signed integers), ‘u32vector ’ (vector
of 32 bit unsigned integers), ‘s64vector ’ (vector of 64 bit signed integers), ‘u64vector ’
(vector of 64 bit unsigned integers), ‘f32vector ’ (vector of 32 bit floating point numbers),
and ‘f64vector ’ (vector of 64 bit floating point numbers).

Chapter 15: Lexical syntax and readtables 125

The external representation of homogeneous vectors is similar to normal vectors but
with the ‘#(’ prefix replaced respectively with ‘#s8(’, ‘#u8(’, ‘#s16(’, ‘#u16(’, ‘#s32(’,
‘#u32(’, ‘#s64(’, ‘#u64(’, ‘#f32(’, and ‘#f64(’.

The elements of the integer homogeneous vectors must be exact integers fitting in the
given precision. The elements of the floating point homogeneous vectors must be inexact
reals.

15.9 Special “#!” syntax

The lexical syntax of the special #! objects is as follows:

#!eof end-of-file object

#!void void object

#!optional optional object

#!rest rest object

#!key key object

15.10 Multiline comment syntax

Multiline comments are delimited by the tokens ‘#| ’ and ‘|# ’. These comments can be
nested.

15.11 Scheme infix syntax extension

The reader supports an infix syntax extension which is called SIX (Scheme Infix eXtension).
This extension is both supported by the ‘read ’ procedure and in program source code.

The backslash character is a delimiter that marks the beginning of a single datum ex-
pressed in the infix syntax (the details are given below). One way to think about it is that
the backslash character escapes the prefix syntax temporarily to use the infix syntax. For
example a three element list could be written as ‘(X \ Y Z) ’, the elements X and Z are
expressed using the normal prefix syntax and Y is expressed using the infix syntax.

When the reader encounters an infix datum, it constructs a syntax tree for that par-
ticular datum. Each node of this tree is represented with a list whose first element is
a symbol indicating the type of node. For example, ‘(six.identifier abc) ’ is the
representation of the infix identifier ‘abc ’ and ‘(six.index (six.identifier abc)
(six.identifier i)) ’ is the representation of the infix datum ‘abc[i]; ’.

The infix grammar is shown below with the corresponding syntax tree representation on
the right hand side. *** The grammar is out of date!

<infix datum> ::=
<stat> $1

<stat> ::=
<if stat> $1

| <while stat> $1
| <for stat> $1

Chapter 15: Lexical syntax and readtables 126

| <expression stat> $1
| <block> $1
| ; (six.compound)

<if stat> ::=
if (<expr>) <stat> (six.if $3 $5)

| if (<expr>) <stat> else <stat> (six.if $3 $5 $7)

<while stat> ::=
while (<expr>) <stat> (six.while $3 $5)

<for stat> ::=
for (<oexpr> ; <oexpr> ; <oexpr>)

<stat>
(six.for $3 $5 $7 $9)

<oexpr> ::=
<expr> $1

| #f

<expression stat> ::=
<expr> ; (six.expression $1)

| <expr> . (six.clause $1)

<expr> ::=
<expr18> $1

<expr18> ::=
<expr17> :- <expr18> (six.x:-y $1 $3)

| <expr17> $1

<expr17> ::=
<expr17> , <expr16> (|six.x,y| $1 $3)

| <expr16> $1

<expr16> ::=
<expr15> := <expr16> (six.x:=y $1 $3)

| <expr15> $1

<expr15> ::=
<expr14> %=<expr15> (six.x%=y $1 $3)

| <expr14> &= <expr15> (six.x&=y $1 $3)
| <expr14> *= <expr15> (six.x*=y $1 $3)
| <expr14> += <expr15> (six.x+=y $1 $3)
| <expr14> -= <expr15> (six.x-=y $1 $3)
| <expr14> /= <expr15> (six.x/=y $1 $3)
| <expr14> <<= <expr15> (six.x<<=y $1 $3)
| <expr14> = <expr15> (six.x=y $1 $3)
| <expr14> >>= <expr15> (six.x>>=y $1 $3)
| <expr14> ˆ= <expr15> (six.xˆ=y $1 $3)
| <expr14> |= <expr15> (|six.x\|=y| $1 $3)
| <expr14> $1

<expr14> ::=

Chapter 15: Lexical syntax and readtables 127

<expr13> : <expr14> (six.x:y $1 $3)
| <expr13> $1

<expr13> ::=
<expr12> ? <expr> : <expr13> (six.x?y:z $1 $3 $5)

| <expr12> $1

<expr12> ::=
<expr12> || <expr11> (|six.x\|\|y| $1 $3)

| <expr11> $1

<expr11> ::=
<expr11> && <expr10> (six.x&&y $1 $3)

| <expr10> $1

<expr10> ::=
<expr10> | <expr9> (|six.x\|y| $1 $3)

| <expr9> $1

<expr9> ::=
<expr9> ˆ <expr8> (six.xˆy $1 $3)

| <expr8> $1

<expr8> ::=
<expr8> & <expr7> (six.x&y $1 $3)

| <expr7> $1

<expr7> ::=
<expr7> != <expr6> (six.x!=y $1 $3)

| <expr7> == <expr6> (six.x==y $1 $3)
| <expr6> $1

<expr6> ::=
<expr6> < <expr5> (six.x<y $1 $3)

| <expr6> <= <expr5> (six.x<=y $1 $3)
| <expr6> > <expr5> (six.x>y $1 $3)
| <expr6> >= <expr5> (six.x>=y $1 $3)
| <expr5> $1

<expr5> ::=
<expr5> << <expr4> (six.x<<y $1 $3)

| <expr5> >> <expr4> (six.x>>y $1 $3)
| <expr4> $1

<expr4> ::=
<expr4> + <expr3> (six.x+y $1 $3)

| <expr4> - <expr3> (six.x-y $1 $3)
| <expr3> $1

<expr3> ::=
<expr3> %<expr2> (six.x%y $1 $3)

| <expr3> * <expr2> (six.x*y $1 $3)

Chapter 15: Lexical syntax and readtables 128

| <expr3> / <expr2> (six.x/y $1 $3)
| <expr2> $1

<expr2> ::=
& <expr2> (six.&x $2)

| + <expr2> (six.+x $2)
| - <expr2> (six.-x $2)
| * <expr2> (six.*x $2)
| ! <expr2> (six.!x $2)
| ! (six.cut)
| ++ <expr2> (six.++x $2)
| -- <expr2> (six.--x $2)
| ˜ <expr2> (six.˜x $2)
| <expr1> $1

<expr1> ::=
<expr1> ++ (six.x++ $1)

| <expr1> -- (six.x-- $1)
| <expr1> (...) (six.call $1)
| <expr1> [...] (six.index $1)
| <expr1> -> <identifier> (six.arrow $1 $3)
| <expr1> . <identifier> (six.dot $1 $3)
| <expr0> $1

<expr0> ::=
<identifier> (six.identifier $1)

| <string> (six.string $1)
| <char> (six.char $1)
| <number> (six.number $1)
| (<expr>) $2
| (<block>) $2
| [...] (six.list $1)
| \ <datum> (six.prefix $2)
| <type> (<parameter list>) <block> (six.function $1 $3 $5)

<block> ::=
{ <stat list> } (six.compound . $2)

<stat list> ::=
<stat> <stat list> ($1 . $2)

| ()

<declaration> ::=
<type> <identifier> = <expr> ; (six.declaration $1 $2

$4)
| <type> <identifier> (<parameter list>)

<block>
(six.function-
declaration $1 $2 $4
$6)

<parameter list> ::=

Chapter 15: Lexical syntax and readtables 129

<nonempty parameter list> $1
| ()

<nonempty parameter list> ::=
<parameter> , <nonempty parameter list> ($1 . $2)

| <parameter> ($1)

<parameter> ::=
<type> <identifier> ($1 $2)

<type> ::=
obj obj

| int int
| void void

To make SIX useful for writing programs, most of the symbols representing the type of
node are predefined macros which approximate the semantics of C. The semantics of SIX
can be changed or extended by redefining these macros.

Chapter 16: C-interface 130

16 C-interface

The Gambit Scheme system offers a mechanism for interfacing Scheme code and C code
called the “C-interface”. A Scheme program indicates which C functions it needs to have
access to and which Scheme procedures can be called from C, and the C interface automat-
ically constructs the corresponding Scheme procedures and C functions. The conversions
needed to transform data from the Scheme representation to the C representation (and
back), are generated automatically in accordance with the argument and result types of the
C function or Scheme procedure.

The C-interface places some restrictions on the types of data that can be exchanged
between C and Scheme. The mapping of data types between C and Scheme is discussed in
the next section. The remaining sections of this chapter describe each special form of the
C-interface.

16.1 The mapping of types between C and Scheme

Scheme and C do not provide the same set of built-in data types so it is important to
understand which Scheme type is compatible with which C type and how values get mapped
from one environment to the other. To improve compatibility a new type is added to Scheme,
the ‘foreign ’ object type, and the following data types are added to C:

scheme-object denotes the universal type of Scheme objects (type ___SCMOBJdefined
in ‘gambit.h ’)

bool denotes the C++ ‘bool ’ type or the C ‘int ’ type (type ___BOOLde-
fined in ‘gambit.h ’)

int8 8 bit signed integer (type ___S8 defined in ‘gambit.h ’)

unsigned-int8 8 bit unsigned integer (type ___U8 defined in ‘gambit.h ’)

int16 16 bit signed integer (type ___S16 defined in ‘gambit.h ’)

unsigned-int16
16 bit unsigned integer (type ___U16 defined in ‘gambit.h ’)

int32 32 bit signed integer (type ___S32 defined in ‘gambit.h ’)

unsigned-int32
32 bit unsigned integer (type ___U32 defined in ‘gambit.h ’)

int64 64 bit signed integer (type ___S64 defined in ‘gambit.h ’)

unsigned-int64
64 bit unsigned integer (type ___U64 defined in ‘gambit.h ’)

float32 32 bit floating point number (type ___F32 defined in ‘gambit.h ’)

float64 64 bit floating point number (type ___F64 defined in ‘gambit.h ’)

latin1 denotes LATIN-1 encoded characters (8 bit unsigned integer, type ___
LATIN1 defined in ‘gambit.h ’)

ucs2 denotes UCS-2 encoded characters (16 bit unsigned integer, type ___
UCS2defined in ‘gambit.h ’)

Chapter 16: C-interface 131

ucs4 denotes UCS-4 encoded characters (32 bit unsigned integer, type ___
UCS4defined in ‘gambit.h ’)

char-string denotes the C ‘char* ’ type when used as a null terminated string

nonnull-char-string
denotes the nonnull C ‘char* ’ type when used as a null terminated
string

nonnull-char-string-list
denotes an array of nonnull C ‘char* ’ terminated with a null pointer

latin1-string denotes LATIN-1 encoded strings (null terminated string of 8 bit un-
signed integers, i.e. ___LATIN1*)

nonnull-latin1-string
denotes nonnull LATIN-1 encoded strings (null terminated string of 8
bit unsigned integers, i.e. ___LATIN1*)

nonnull-latin1-string-list
denotes an array of nonnull LATIN-1 encoded strings terminated with
a null pointer

utf8-string denotes UTF-8 encoded strings (null terminated string of char , i.e.
char*)

nonnull-utf8-string
denotes nonnull UTF-8 encoded strings (null terminated string of char ,
i.e. char*)

nonnull-utf8-string-list
denotes an array of nonnull UTF-8 encoded strings terminated with a
null pointer

ucs2-string denotes UCS-2 encoded strings (null terminated string of 16 bit unsigned
integers, i.e. ___UCS2*)

nonnull-ucs2-string
denotes nonnull UCS-2 encoded strings (null terminated string of 16 bit
unsigned integers, i.e. ___UCS2*)

nonnull-ucs2-string-list
denotes an array of nonnull UCS-2 encoded strings terminated with a
null pointer

ucs4-string denotes UCS-4 encoded strings (null terminated string of 32 bit unsigned
integers, i.e. ___UCS4*)

nonnull-ucs4-string
denotes nonnull UCS-4 encoded strings (null terminated string of 32 bit
unsigned integers, i.e. ___UCS4*)

nonnull-ucs4-string-list
denotes an array of nonnull UCS-4 encoded strings terminated with a
null pointer

Chapter 16: C-interface 132

To specify a particular C type inside the c-lambda , c-define and c-define-type
forms, the following “Scheme notation” is used:

Scheme notation C type

void void

bool bool

char char (may be signed or unsigned depending on the C compiler)

signed-char signed char

unsigned-char unsigned char

latin1 latin1

ucs2 ucs2

ucs4 ucs4

short short

unsigned-short
unsigned short

int int

unsigned-int unsigned int

long long

unsigned-long unsigned long

long-long long long

unsigned-long-long
unsigned long long

float float

double double

int8 int8

unsigned-int8 unsigned-int8

int16 int16

unsigned-int16
unsigned-int16

int32 int32

unsigned-int32
unsigned-int32

int64 int64

unsigned-int64
unsigned-int64

float32 float32

Chapter 16: C-interface 133

float64 float64

(struct " c-struct-id " [tag [release-function]])
struct c-struct-id (where c-struct-id is the name of a C structure;
see below for the meaning of tag and release-function)

(union " c-union-id " [tag [release-function]])
union c-union-id (where c-union-id is the name of a C union; see
below for the meaning of tag and release-function)

(type " c-type-id " [tag [release-function]])
c-type-id (where c-type-id is an identifier naming a C type; see below
for the meaning of tag and release-function)

(pointer type [tag [release-function]])
T* (where T is the C equivalent of type which must be the Scheme
notation of a C type; see below for the meaning of tag and release-
function)

(nonnull-pointer type [tag [release-function]])
same as (pointer type [tag [release-function]]) except the
NULL pointer is not allowed

(function (type1 ...) result-type)
function with the given argument types and result type

(nonnull-function (type1 ...) result-type)
same as (function (type1 ...) result-type) except the NULL
pointer is not allowed

char-string char-string

nonnull-char-string
nonnull-char-string

nonnull-char-string-list
nonnull-char-string-list

latin1-string latin1-string

nonnull-latin1-string
nonnull-latin1-string

nonnull-latin1-string-list
nonnull-latin1-string-list

utf8-string utf8-string

nonnull-utf8-string
nonnull-utf8-string

nonnull-utf8-string-list
nonnull-utf8-string-list

ucs2-string ucs2-string

nonnull-ucs2-string
nonnull-ucs2-string

Chapter 16: C-interface 134

nonnull-ucs2-string-list
nonnull-ucs2-string-list

ucs4-string ucs4-string

nonnull-ucs4-string
nonnull-ucs4-string

nonnull-ucs4-string-list
nonnull-ucs4-string-list

scheme-object scheme-object

name appropriate translation of name (where name is a C type defined with
c-define-type)

" c-type-id " c-type-id (this form is equivalent to (type " c-type-id "))

The struct , union , type , pointer and nonnull-pointer types are “foreign
types” and they are represented on the Scheme side as “foreign objects”. A foreign ob-
ject is internally represented as a pointer. This internal pointer is identical to the C pointer
being represented in the case of the pointer and nonnull-pointer types.

In the case of the struct , union and type types, the internal pointer points to a copy
of the C data type being represented. When an instance of one of these types is converted
from C to Scheme, a block of memory is allocated from the C heap and initialized with
the instance and then a foreign object is allocated from the Scheme heap and initialized
with the pointer to this copy. This approach may appear overly complex, but it allows the
conversion of C++ classes that do not have a zero parameter constructor or an assignment
method (i.e. when compiling with a C++ compiler an instance is copied using ‘new type
(instance) ’, which calls the copy-constructor of type if it is a class; type’s assignment
operator is never used). Conversion from Scheme to C simply dereferences the internal
pointer (no allocation from the C heap is performed). Deallocation of the copy on the C
heap is under the control of the release function attached to the foreign object (see below).

For type checking on the Scheme side, a tag can be specified within a foreign type
specification. The tag must be #f or a symbol. When it is not specified the tag defaults
to a symbol whose name, as returned by symbol->string , is the C type declaration for
that type. For example the default tag for the type ‘(pointer (pointer char)) ’ is the
symbol ‘char** ’. Two foreign types are compatible (i.e. can be converted from one to the
other) if they have identical tags or if at least one of the tags is #f . For the safest code
the #f tag should be used sparingly, as it completely bypasses type checking. The external
representation of Scheme foreign objects (used by the write procedure) contains the tag
if it is not #f , and the hexadecimal address denoted by the internal pointer, for example
‘#<char** #2 0x2AAC535C> ’. Note that the hexadecimal address is in C notation, which
can be easily transferred to a C debugger with a “cut-and-paste”.

A release-function can also be specified within a foreign type specification. The release-
function must be #f or a string naming a C function with a single parameter of type
‘void* ’ (in which the internal pointer is passed) and with a result of type ‘___SCMOBJ’
(for returning an error code). When the release-function is not specified or is #f a default
function is constructed by the C-interface. This default function does nothing in the case
of the pointer and nonnull-pointer types (deallocation is not the responsibility of

Chapter 16: C-interface 135

the C-interface) and returns the fixnum ‘___FIX(___NO_ERR) ’ to indicate no error. In
the case of the struct , union and type types, the default function reclaims the copy
on the C heap referenced by the internal pointer (when using a C++ compiler this is done
using ‘delete (type *) internal-pointer ’, which calls the destructor of type if it is a
class) and returns ‘___FIX(___NO_ERR) ’. In many situations the default release-function
will perform the appropriate cleanup for the foreign type. However, in certain cases special
operations (such as decrementing a reference count, removing the object from a table, etc)
must be performed. For such cases a user supplied release-function is needed.

The release-function is invoked at most once for any foreign object. After the release-
function is invoked, the foreign object is considered “released” and can no longer be used
in a foreign type conversion. When the garbage collector detects that a foreign object is no
longer reachable by the program, it will invoke the release-function if the foreign object is
not yet released. When there is a need to release the foreign object promptly, the program
can explicitly call the Scheme procedure foreign-release! which invokes the release-
function if the foreign object is not yet released, and does nothing otherwise.

The following table gives the C types to which each Scheme type can be converted:

Scheme type Allowed target C types

boolean #f scheme-object ; bool ; pointer ; function ; char-string ;
latin1-string ; utf8-string ; ucs2-string ; ucs4-string

boolean #t scheme-object ; bool

character scheme-object ; bool ; [[un]signed] char ; latin1 ; ucs2 ; ucs4

exact integer scheme-object ; bool ; [unsigned-] int8 /int16 /int32 /int64 ;
[unsigned] short /int /long

inexact real scheme-object ; bool ; float ; double ; float32 ; float64

string scheme-object ; bool ; char-string ; nonnull-char-string ;
latin1-string ; nonnull-latin1-string ; utf8-string ;
nonnull-utf8-string ; ucs2-string ; nonnull-ucs2-string ;
ucs4-string ; nonnull-ucs4-string

foreign object scheme-object ; bool ; struct /union /type /pointer /nonnull-
pointer with the appropriate tag

vector scheme-object ; bool

symbol scheme-object ; bool

procedure scheme-object ; bool ; function ; nonnull-function

other objects scheme-object ; bool

The following table gives the Scheme types to which each C type will be converted:

C type Resulting Scheme type

scheme-object the Scheme object encoded

bool boolean

[[un]signed] char ; latin1 ; ucs2 ; ucs4
character

Chapter 16: C-interface 136

[unsigned-] int8 /int16 /int32 /int64 ; [unsigned] short /int /long
exact integer

float ; double ; float32 ; float64
inexact real

char-string ; latin1-string ; utf8-string ; ucs2-string ; ucs4-string
string or #f if it is equal to ‘NULL’

nonnull-char-string ; nonnull-latin1-string ; nonnull-utf8-string ;
nonnull-ucs2-string ; nonnull-ucs4-string

string

struct /union /type /pointer /nonnull-pointer
foreign object with the appropriate tag or #f in the case of a pointer
equal to ‘NULL’

function procedure or #f if it is equal to ‘NULL’

nonnull-function
procedure

void void object

All Scheme types are compatible with the C types scheme-object and bool . Con-
version to and from the C type scheme-object is the identity function on the object
encoding. This provides a low-level mechanism for accessing Scheme’s object representa-
tion from C (with the help of the macros in the ‘gambit.h ’ header file). When a C bool
type is expected, an extended Scheme boolean can be passed (#f is converted to 0 and all
other values are converted to 1).

The Scheme boolean #f can be passed to the C environment where a char-string ,
latin1-string , utf8-string , ucs2-string , ucs4-string , pointer or
function type is expected. In this case, #f is converted to the ‘NULL’ pointer. C bool s
are extended booleans so any value different from 0 represents true. Thus, a C bool
passed to the Scheme environment is mapped as follows: 0 to #f and all other values to
#t .

A Scheme character passed to the C environment where any C character type is expected
is converted to the corresponding character in the C environment. An error is signaled if the
Scheme character does not fit in the C character. Any C character type passed to Scheme
is converted to the corresponding Scheme character. An error is signaled if the C character
does not fit in the Scheme character.

A Scheme exact integer passed to the C environment where a C integer type (other than
char) is expected is converted to the corresponding integral value. An error is signaled if
the value falls outside of the range representable by that integral type. C integer values
passed to the Scheme environment are mapped to the same Scheme exact integer. If the
value is outside the fixnum range, a bignum is created.

A Scheme inexact real passed to the C environment is converted to the corresponding
float , double , float32 or float64 value. C float , double , float32 and float64
values passed to the Scheme environment are mapped to the closest Scheme inexact real.

Scheme’s rational numbers and complex numbers are not compatible with any C numeric
type.

Chapter 16: C-interface 137

A Scheme string passed to the C environment where any C string type is expected is
converted to a null terminated string using the appropriate encoding. The C string is a fresh
copy of the Scheme string. If the C string was created for an argument of a c-lambda ,
the C string will be reclaimed when the c-lambda returns. If the C string was created
for returning the result of a c-define to C, the caller is responsible for reclaiming the C
string with a call to the ___release_string function (see below for an example). Any C
string type passed to the Scheme environment causes the creation of a fresh Scheme string
containing a copy of the C string (unless the C string is equal to NULL, in which case it is
converted to #f).

A foreign type passed to the Scheme environment causes the creation and initialization
of a Scheme foreign object with the appropriate tag (except for the case of a pointer
equal to NULL which is converted to #f). A Scheme foreign object can be passed where a
foreign type is expected, on the condition that the tags are appropriate (identical or one is
#f) and the Scheme foreign object is not yet released. The value #f is also acceptable for
a pointer type, and is converted to NULL.

Scheme procedures defined with the c-define special form can be passed where the
function and nonnull-function types are expected. The value #f is also accept-
able for a function type, and is converted to NULL. No other Scheme procedures are
acceptable. Conversion from the function and nonnull-function types to Scheme
procedures is not currently implemented.

16.2 The c-declare special form

Synopsis:
(c-declare c-declaration)

Initially, the C file produced by gsc contains only an ‘#include ’ of ‘gambit.h ’. This
header file provides a number of macro and procedure declarations to access the Scheme
object representation. The special form c-declare adds c-declaration (which must be a
string containing the C declarations) to the C file. This string is copied to the C file on a
new line so it can start with preprocessor directives. All types of C declarations are allowed
(including type declarations, variable declarations, function declarations, ‘#include ’ direc-
tives, ‘#define ’s, and so on). These declarations are visible to subsequent c-declare s,
c-initialize s, and c-lambda s, and c-define s in the same module. The most com-
mon use of this special form is to declare the external functions that are referenced in
c-lambda special forms. Such functions must either be declared explicitly or by including
a header file which contains the appropriate C declarations.

The c-declare special form does not return a value. It can only appear at top level.
For example:

(c-declare
"
#include <stdio.h>

extern char *getlogin ();

#ifdef sparc
char *host = \"sparc\"; /* note backslashes */
#else
char *host = \"unknown\";

Chapter 16: C-interface 138

#endif

FILE *tfile;
")

16.3 The c-initialize special form

Synopsis:
(c-initialize c-code)

Just after the program is loaded and before control is passed to the Scheme code, each C
file is initialized by calling its associated initialization function. The body of this function is
normally empty but it can be extended by using the c-initialize form. Each occurence
of the c-initialize form adds code to the body of the initialization function in the order
of appearance in the source file. c-code must be a string containing the C code to execute.
This string is copied to the C file on a new line so it can start with preprocessor directives.

The c-initialize special form does not return a value. It can only appear at top
level.

For example:
(c-initialize "tfile = tmpfile ();")

16.4 The c-lambda special form

Synopsis:
(c-lambda (type1 ...) result-type c-name-or-code)

The c-lambda special form makes it possible to create a Scheme procedure that will
act as a representative of some C function or C code sequence. The first subform is a
list containing the type of each argument. The type of the function’s result is given next.
Finally, the last subform is a string that either contains the name of the C function to call or
some sequence of C code to execute. Variadic C functions are not supported. The resulting
Scheme procedure takes exactly the number of arguments specified and delivers them in the
same order to the C function. When the Scheme procedure is called, the arguments will
be converted to their C representation and then the C function will be called. The result
returned by the C function will be converted to its Scheme representation and this value will
be returned from the Scheme procedure call. An error will be signaled if some conversion is
not possible. The temporary memory allocated from the C heap for the conversion of the
arguments and result will be reclaimed whether there is an error or not.

When c-name-or-code is not a valid C identifier, it is treated as an arbitrary piece of C
code. Within the C code the variables ‘___arg1 ’, ‘___arg2 ’, etc. can be referenced to
access the converted arguments. Similarly, the result to be returned from the call should
be assigned to the variable ‘___result ’ except if the result is of struct , union , type ,
pointer or nonnull-pointer type in which case a pointer should be assigned to the
variable ‘___result_voidstar ’ which is of type ‘void* ’. If no result needs to be re-
turned, the result-type should be void and no assignment to the variable ‘___result ’
or ‘___result_voidstar ’ should take place. Note that the C code should not contain
return statements as this is meaningless. Control must always fall off the end of the C
code. The C code is copied to the C file on a new line so it can start with preprocessor
directives. Moreover the C code is always placed at the head of a compound statement

Chapter 16: C-interface 139

whose lifetime encloses the C to Scheme conversion of the result. Consequently, temporary
storage (strings in particular) declared at the head of the C code can be returned by assign-
ing them to ‘___result ’ or ‘___result_voidstar ’. In the c-name-or-code, the macro
‘___AT_END’ may be defined as the piece of C code to execute before control is returned
to Scheme but after the result is converted to its Scheme representation. This is mainly
useful to deallocate temporary storage contained in the result.

When passed to the Scheme environment, the C void type is converted to the void
object.

For example:
(define fopen

(c-lambda (nonnull-char-string nonnull-char-string)
(pointer "FILE")

"fopen"))

(define fgetc
(c-lambda ((pointer "FILE"))

int
"fgetc"))

(let ((f (fopen "datafile" "r")))
(if f (write (fgetc f))))

(define char-code (c-lambda (char) int "___result = ___arg1;"))

(define host ((c-lambda () nonnull-char-string "___result = host;")))

(define stdin ((c-lambda () (pointer "FILE") "___result = stdin;")))

((c-lambda () void
"printf(\"hello\\n\"); printf(\"world\\n\");"))

(define pack-1-char
(c-lambda (char)

nonnull-char-string
"
___result = malloc (2);
if (___result != NULL) { ___result[0] = ___arg1; ___result[1] = 0; }
#define ___AT_END if (___result != NULL) free (___result);
"))

(define pack-2-chars
(c-lambda (char char)

nonnull-char-string
"
char s[3]; s[0] = ___arg1; s[1] = ___arg2; s[2] = 0; ___result = s;
"))

16.5 The c-define special form

Synopsis:
(c-define (variable define-formals) (type1 ...) result-type c-name scope

body)

The c-define special form makes it possible to create a C function that will act
as a representative of some Scheme procedure. A C function named c-name as well as

Chapter 16: C-interface 140

a Scheme procedure bound to the variable variable are defined. The parameters of the
Scheme procedure are define-formals and its body is at the end of the form. The type of
each argument of the C function, its result type and c-name (which must be a string) are
specified after the parameter specification of the Scheme procedure. When the C function
c-name is called from C, its arguments are converted to their Scheme representation and
passed to the Scheme procedure. The result of the Scheme procedure is then converted to
its C representation and the C function c-name returns it to its caller.

The scope of the C function can be changed with the scope parameter, which must be
a string. This string is placed immediately before the declaration of the C function. So if
scope is the string "static" , the scope of c-name is local to the module it is in, whereas
if scope is the empty string, c-name is visible from other modules.

The c-define special form does not return a value. It can only appear at top level.
For example:

(c-define (proc x #!optional (y x) #!rest z) (int int char float) int "f" ""
(write (cons x (cons y z)))
(newline)
(+ x y))

(proc 1 2 #\x 1.5) => 3 and prints (1 2 #\x 1.5)
(proc 1) => 2 and prints (1 1)

; if f is called from C with the call f (1, 2, ’x’, 1.5)
; the value 3 is returned and (1 2 #\x 1.5) is printed.
; f has to be called with 4 arguments.

The c-define special form is particularly useful when the driving part of an application
is written in C and Scheme procedures are called directly from C. The Scheme part of the
application is in a sense a “server” that is providing services to the C part. The Scheme
procedures that are to be called from C need to be defined using the c-define special
form. Before it can be used, the Scheme part must be initialized with a call to the function
‘___setup ’. Before the program terminates, it must call the function ‘___cleanup ’
so that the Scheme part may do final cleanup. A sample application is given in the file
‘tests/server.scm ’.

16.6 The c-define-type special form

Synopsis:
(c-define-type name type [c-to-scheme scheme-to-c [cleanup]])

This form associates the type identifier name to the C type type. The name must not
clash with predefined types (e.g. char-string , latin1 , etc.) or with types previously
defined with c-define-type in the same file. The c-define-type special form does
not return a value. It can only appear at top level.

If only the two parameters name and type are supplied then after this definition, the
use of name in a type specification is synonymous to type.

For example:
(c-define-type FILE "FILE")
(c-define-type FILE* (pointer FILE))
(c-define-type time-struct-ptr (pointer (struct "tms")))
(define fopen (c-lambda (char-string char-string) FILE* "fopen"))

Chapter 16: C-interface 141

(define fgetc (c-lambda (FILE*) int "fgetc"))

Note that identifiers are not case-sensitive in standard Scheme but it is good program-
ming practice to use a name with the same case as in C.

If four or more parameters are supplied, then type must be a string naming the C type,
c-to-scheme and scheme-to-c must be strings suffixing the C macros that convert data of
that type between C and Scheme. If cleanup is supplied it must be a boolean indicating
whether it is necessary to perform a cleanup operation (such as freeing memory) when data
of that type is converted from Scheme to C (it defaults to #t). The cleanup information
is used when the C stack is unwound due to a continuation invocation (see Section 16.7
[continuations], page 147). Although it is safe to always specify #t , it is more efficient
in time and space to specify #f because the unwinding mechanism can skip C-interface
frames which only contain conversions of data types requiring no cleanup. Two pairs of C
macros need to be defined for conversions performed by c-lambda forms and two pairs for
conversions performed by c-define forms:

___BEGIN_CFUN_scheme-to-c (___SCMOBJ, type , int)
___END_CFUN_scheme-to-c (___SCMOBJ, type , int)

___BEGIN_CFUN_c-to-scheme (type , ___SCMOBJ)
___END_CFUN_c-to-scheme (type , ___SCMOBJ)

___BEGIN_SFUN_c-to-scheme (type , ___SCMOBJ, int)
___END_SFUN_c-to-scheme (type , ___SCMOBJ, int)

___BEGIN_SFUN_scheme-to-c (___SCMOBJ, type)
___END_SFUN_scheme-to-c (___SCMOBJ, type)

The macros prefixed with ___BEGIN perform the conversion and those prefixed with
___END perform any cleanup necessary (such as freeing memory temporarily allocated for
the conversion). The macro ___END_CFUN_scheme-to-c must free the result of the
conversion if it is memory allocated, and ___END_SFUN_scheme-to-c must not (i.e. it
is the responsibility of the caller to free the result).

The first parameter of these macros is the C variable that contains the value to be
converted, and the second parameter is the C variable in which to store the converted
value. The third parameter, when present, is the index (starting at 1) of the parameter
of the c-lambda or c-define form that is being converted (this is useful for reporting
precise error information when a conversion is impossible).

To allow for type checking, the first three ___BEGIN macros must expand to an unter-
minated compound statement prefixed by an if , conditional on the absence of type check
error:

if ((___err = conversion_operation) == ___FIX(___NO_ERR)) {

The last ___BEGIN macro must expand to an unterminated compound statement:
{ ___err = conversion_operation ;

If type check errors are impossible then a ___BEGIN macro can simply expand to an
unterminated compound statement performing the conversion:

{ conversion_operation ;

The ___END macros must expand to a statement, or to nothing if no cleanup is re-
quired, followed by a closing brace (to terminate the compound statement started at the
corresponding ___BEGIN macro).

Chapter 16: C-interface 142

The conversion operation is typically a function call that returns an error code value
of type ___SCMOBJ(the error codes are defined in ‘gambit.h ’, and the error code ___
FIX(___UNKNOWN_ERR)is available for generic errors). conversion operation can also set
the variable ___errmsg of type ___SCMOBJto a specific Scheme string error message.

Below is a simple example showing how to interface to an ‘EBCDIC’ character type.
Memory allocation is not needed for conversion and type check errors are impossible when
converting EBCDIC to Scheme characters, but they are possible when converting from
Scheme characters to EBCDIC since Gambit supports Unicode characters.

(c-declare
"
typedef char EBCDIC; /* EBCDIC encoded characters */

void put_char (EBCDIC c) { ... } /* EBCDIC I/O functions */
EBCDIC get_char (void) { ... }

char EBCDIC_to_latin1[256] = { ... }; /* conversion tables */
char latin1_to_EBCDIC[256] = { ... };

___SCMOBJ SCMOBJ_to_EBCDIC (___SCMOBJ src, EBCDIC *dst)
{

int x = ___INT(src); /* convert from Scheme character to int */
if (x > 255) return ___UNKNOWN_ERR;
*dst = latin1_to_EBCDIC[x];
return ___FIX(___NO_ERR);

}

#define ___BEGIN_CFUN_SCMOBJ_to_EBCDIC(src,dst,i) \\
if ((___err = SCMOBJ_to_EBCDIC (src, &dst)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_SCMOBJ_to_EBCDIC(src,dst,i) }

#define ___BEGIN_CFUN_EBCDIC_to_SCMOBJ(src,dst) \\
{ dst = ___CHR(EBCDIC_to_latin1[src]);
#define ___END_CFUN_EBCDIC_to_SCMOBJ(src,dst) }

#define ___BEGIN_SFUN_EBCDIC_to_SCMOBJ(src,dst,i) \\
{ dst = ___CHR(EBCDIC_to_latin1[src]);
#define ___END_SFUN_EBCDIC_to_SCMOBJ(src,dst,i) }

#define ___BEGIN_SFUN_SCMOBJ_to_EBCDIC(src,dst) \\
{ ___err = SCMOBJ_to_EBCDIC (src, &dst);
#define ___END_SFUN_SCMOBJ_to_EBCDIC(src,dst) }
")

(c-define-type EBCDIC "EBCDIC" "EBCDIC_to_SCMOBJ" "SCMOBJ_to_EBCDIC" #f)

(define put-char (c-lambda (EBCDIC) void "put_char"))
(define get-char (c-lambda () EBCDIC "get_char"))

(c-define (write-EBCDIC c) (EBCDIC) void "write_EBCDIC" ""
(write-char c))

(c-define (read-EBCDIC) () EBCDIC "read_EBCDIC" ""
(read-char))

Below is a more complex example that requires memory allocation when converting from
C to Scheme. It is an interface to a 2D ‘point ’ type which is represented in Scheme by a

Chapter 16: C-interface 143

pair of integers. The conversion of the x and y components is done by calls to the conversion
macros for the int type (defined in ‘gambit.h ’). Note that no cleanup is necessary when
converting from Scheme to C (i.e. the last parameter of the c-define-type is #f).

(c-declare
"
typedef struct { int x, y; } point;

void line_to (point p) { ... }
point get_mouse (void) { ... }
point add_points (point p1, point p2) { ... }

___SCMOBJ SCMOBJ_to_POINT (___SCMOBJ src, point *dst, int arg_num)
{

___SCMOBJ ___err = ___FIX(___NO_ERR);
if (!___PAIRP(src))

___err = ___FIX(___UNKNOWN_ERR);
else

{
___SCMOBJ car = ___CAR(src);
___SCMOBJ cdr = ___CDR(src);
___BEGIN_CFUN_SCMOBJ_TO_INT(car,dst->x,arg_num)
___BEGIN_CFUN_SCMOBJ_TO_INT(cdr,dst->y,arg_num)
___END_CFUN_SCMOBJ_TO_INT(cdr,dst->y,arg_num)
___END_CFUN_SCMOBJ_TO_INT(car,dst->x,arg_num)

}
return ___err;

}

___SCMOBJ POINT_to_SCMOBJ (point src, ___SCMOBJ *dst, int arg_num)
{

___SCMOBJ ___err = ___FIX(___NO_ERR);
___SCMOBJ x_scmobj;
___SCMOBJ y_scmobj;
___BEGIN_SFUN_INT_TO_SCMOBJ(src.x,x_scmobj,arg_num)
___BEGIN_SFUN_INT_TO_SCMOBJ(src.y,y_scmobj,arg_num)
*dst = ___EXT(___make_pair) (x_scmobj, y_scmobj, ___STILL);
if (___FIXNUMP(*dst))

___err = *dst; /* return allocation error */
___END_SFUN_INT_TO_SCMOBJ(src.y,y_scmobj,arg_num)
___END_SFUN_INT_TO_SCMOBJ(src.x,x_scmobj,arg_num)
return ___err;

}

#define ___BEGIN_CFUN_SCMOBJ_to_POINT(src,dst,i) \\
if ((___err = SCMOBJ_to_POINT (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_SCMOBJ_to_POINT(src,dst,i) }

#define ___BEGIN_CFUN_POINT_to_SCMOBJ(src,dst) \\
if ((___err = POINT_to_SCMOBJ (src, &dst, ___RETURN_POS)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_POINT_to_SCMOBJ(src,dst) \\
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_POINT_to_SCMOBJ(src,dst,i) \\
if ((___err = POINT_to_SCMOBJ (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_SFUN_POINT_to_SCMOBJ(src,dst,i) \\
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_SCMOBJ_to_POINT(src,dst) \\

Chapter 16: C-interface 144

{ ___err = SCMOBJ_to_POINT (src, &dst, ___RETURN_POS);
#define ___END_SFUN_SCMOBJ_to_POINT(src,dst) }
")

(c-define-type point "point" "POINT_to_SCMOBJ" "SCMOBJ_to_POINT" #f)

(define line-to (c-lambda (point) void "line_to"))
(define get-mouse (c-lambda () point "get_mouse"))
(define add-points (c-lambda (point point) point "add_points"))

(c-define (write-point p) (point) void "write_point" ""
(write p))

(c-define (read-point) () point "read_point" ""
(read))

An example that requires memory allocation when converting from C to Scheme and
Scheme to C is shown below. It is an interface to a “null-terminated array of strings” type
which is represented in Scheme by a list of strings. Note that some cleanup is necessary
when converting from Scheme to C.

(c-declare
"
#include <stdlib.h>
#include <unistd.h>

extern char **environ;

char **get_environ (void) { return environ; }

void free_strings (char **strings)
{

char **ptr = strings;
while (*ptr != NULL)

{
___EXT(___release_string) (*ptr);
ptr++;

}
free (strings);

}

___SCMOBJ SCMOBJ_to_STRINGS (___SCMOBJ src, char ***dst, int arg_num)
{

/*
* Src is a list of Scheme strings. Dst will be a null terminated
* array of C strings.
*/

int i;
___SCMOBJ lst = src;
int len = 4; /* start with a small result array */
char **result = (char**) malloc (len * sizeof (char*));

if (result == NULL)
return ___FIX(___HEAP_OVERFLOW_ERR);

i = 0;
result[i] = NULL; /* always keep array null terminated */

Chapter 16: C-interface 145

while (___PAIRP(lst))
{

___SCMOBJ scm_str = ___CAR(lst);
char *c_str;
___SCMOBJ ___err;

if (i >= len-1) /* need to grow the result array? */
{

char **new_result;
int j;

len = len * 3 / 2;
new_result = (char**) malloc (len * sizeof (char*));
if (new_result == NULL)

{
free_strings (result);
return ___FIX(___HEAP_OVERFLOW_ERR);

}
for (j=i; j>=0; j--)

new_result[j] = result[j];
free (result);
result = new_result;

}

___err = ___EXT(___SCMOBJ_to_CHARSTRING) (scm_str, &c_str, arg_num);

if (___err != ___FIX(___NO_ERR))
{

free_strings (result);
return ___err;

}

result[i++] = c_str;
result[i] = NULL;
lst = ___CDR(lst);

}

if (!___NULLP(lst))
{

free_strings (result);
return ___FIX(___UNKNOWN_ERR);

}

/*
* Note that the caller is responsible for calling free_strings
* when it is done with the result.
*/

*dst = result;
return ___FIX(___NO_ERR);

}

___SCMOBJ STRINGS_to_SCMOBJ (char **src, ___SCMOBJ *dst, int arg_num)
{

___SCMOBJ ___err = ___FIX(___NO_ERR);
___SCMOBJ result = ___NUL; /* start with the empty list */
int i = 0;

Chapter 16: C-interface 146

while (src[i] != NULL)
i++;

/* build the list of strings starting at the tail */

while (--i >= 0)
{

___SCMOBJ scm_str;
___SCMOBJ new_result;

/*
* Invariant: result is either the empty list or a ___STILL pair
* with reference count equal to 1. This is important because
* it is possible that ___CHARSTRING_to_SCMOBJ and ___make_pair
* will invoke the garbage collector and we don’t want the
* reference in result to become invalid (which would be the
* case if result was a ___MOVABLE pair or if it had a zero
* reference count).
*/

___err = ___EXT(___CHARSTRING_to_SCMOBJ) (src[i], &scm_str, arg_num);

if (___err != ___FIX(___NO_ERR))
{

___EXT(___release_scmobj) (result); /* allow GC to reclaim re-
sult */

return ___FIX(___UNKNOWN_ERR);
}

/*
* Note that scm_str will be a ___STILL object with reference
* count equal to 1, so there is no risk that it will be
* reclaimed or moved if ___make_pair invokes the garbage
* collector.
*/

new_result = ___EXT(___make_pair) (scm_str, result, ___STILL);

/*
* We can zero the reference count of scm_str and result (if
* not the empty list) because the pair now references these
* objects and the pair is reachable (it can’t be reclaimed
* or moved by the garbage collector).
*/

___EXT(___release_scmobj) (scm_str);
___EXT(___release_scmobj) (result);

result = new_result;

if (___FIXNUMP(result))
return result; /* allocation failed */

}

/*
* Note that result is either the empty list or a ___STILL pair
* with a reference count equal to 1. There will be a call to
* ___release_scmobj later on (in ___END_CFUN_STRINGS_to_SCMOBJ

Chapter 16: C-interface 147

* or ___END_SFUN_STRINGS_to_SCMOBJ) that will allow the garbage
* collector to reclaim the whole list of strings when the Scheme
* world no longer references it.
*/

*dst = result;
return ___FIX(___NO_ERR);

}

#define ___BEGIN_CFUN_SCMOBJ_to_STRINGS(src,dst,i) \\
if ((___err = SCMOBJ_to_STRINGS (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_SCMOBJ_to_STRINGS(src,dst,i) \\
free_strings (dst); }

#define ___BEGIN_CFUN_STRINGS_to_SCMOBJ(src,dst) \\
if ((___err = STRINGS_to_SCMOBJ (src, &dst, ___RETURN_POS)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_STRINGS_to_SCMOBJ(src,dst) \\
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_STRINGS_to_SCMOBJ(src,dst,i) \\
if ((___err = STRINGS_to_SCMOBJ (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_SFUN_STRINGS_to_SCMOBJ(src,dst,i) \\
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_SCMOBJ_to_STRINGS(src,dst) \\
{ ___err = SCMOBJ_to_STRINGS (src, &dst, ___RETURN_POS);
#define ___END_SFUN_SCMOBJ_to_STRINGS(src,dst) }
")

(c-define-type char** "char**" "STRINGS_to_SCMOBJ" "SCMOBJ_to_STRINGS")

(define execv (c-lambda (char-string char**) int "execv"))
(define get-environ (c-lambda () char** "get_environ"))

(c-define (write-strings x) (char**) void "write_strings" ""
(write x))

(c-define (read-strings) () char** "read_strings" ""
(read))

16.7 Continuations and the C-interface

The C-interface allows C to Scheme calls to be nested. This means that during a call from
C to Scheme another call from C to Scheme can be performed. This case occurs in the
following program:

(c-declare
"
int p (char *); /* forward declarations */
int q (void);

int a (char *x) { return 2 * p (x+1); }
int b (short y) { return y + q (); }
")

(define a (c-lambda (char-string) int "a"))
(define b (c-lambda (short) int "b"))

Chapter 16: C-interface 148

(c-define (p z) (char-string) int "p" ""
(+ (b 10) (string-length z)))

(c-define (q) () int "q" ""
123)

(write (a "hello"))

In this example, the main Scheme program calls the C function ‘a’ which calls the Scheme
procedure ‘p’ which in turn calls the C function ‘b’ which finally calls the Scheme procedure
‘q’.

Gambit-C maintains the Scheme continuation separately from the C stack, thus allowing
the Scheme continuation to be unwound independently from the C stack. The C stack frame
created for the C function ‘f ’ is only removed from the C stack when control returns from ‘f ’
or when control returns to a C function “above” ‘f ’. Special care is required for programs
which escape to Scheme (using first-class continuations) from a Scheme to C (to Scheme)
call because the C stack frame will remain on the stack. The C stack may overflow if this
happens in a loop with no intervening return to a C function. To avoid this problem make
sure the C stack gets cleaned up by executing a normal return from a Scheme to C call.

Chapter 17: System limitations 149

17 System limitations

• On some systems floating point overflows will cause the program to terminate with a
floating point exception.

• On some systems floating point operations involving ‘+nan. ’ ‘+inf. ’, ‘-inf. ’, or
‘-0. ’ do not return the value required by the IEEE 754 floating point standard.

• The compiler will not properly compile files with more than one definition (with
define) of the same procedure. Replace all but the first define with assignments
(set!).

• The maximum number of arguments that can be passed to a procedure by the apply
procedure is 8192.

• On MSDOS and Microsoft Windows, 〈̂ C〉 is sometimes interpreted as 〈̂ Z〉 (i.e. an
end-of-file).

Chapter 18: Copyright and license 150

18 Copyright and license

The Gambit-C system is Copyright c© 1994-2004 by Marc Feeley, all rights reserved. The
Gambit-C system Version 4.0 beta 8 is licensed under the Apache License, Version 2.0,
which is copied below.

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner

Chapter 18: Copyright and license 151

or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not

Chapter 18: Copyright and license 152

pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,

Chapter 18: Copyright and license 153

or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Chapter 18: General index 154

General index

+
+z . 13

,
,(c expr) . 20
,+ . 21
,- . 21
,? . 20
,b . 21
,c . 20
,d . 20
,e . 21
,i . 21
,l . 20
, n . 21
,q . 20
,s . 20
,t . 20
,y . 21

-
-:+ . 18
-:= . 18
-:d . 17
-:d- . 18
-:da . 17
-:dc . 18
-:di . 18
-:d LEVEL. 18
-:dp . 17
-:dq . 18
-:dr . 17
-:ds . 17
-:f . 18
-:h . 17
-:l . 17
-:m . 17
-:s . 17
-:S . 17
-:t . 18
-c . 7, 9
-call_shared . 13
-cc-options . 8
-D___DYNAMIC. 11
-D___LIBRARY . 13
-D___PRIMAL . 13
-D___SHARED. 13
-D___SINGLE_HOST . 13
-debug . 9
-dynamic . 7, 9
-e . 8
-expansion . 9

-flat . 9
-fpic . 13
-fPIC . 13
-gvm . 9
-i . 8
-I/usr/local/Gambit-C/include 13
-Kpic . 13
-KPIC . 13
-l base . 9
-L/usr/local/Gambit-C/lib 13
-ld-options . 8
-O . 13
-o output . 9
-pic . 13
-postlude . 8
-prelude . 8
-rdynamic . 13
-report . 9
-shared . 13
-track-scheme . 9
-verbose . 9
-warnings . 9

.

.c . 7

.scm . 7

.six . 7

<
< . 37
<= . 37

=
= . 37

>
> . 37
>= . 37

ˆ
ˆC . 19, 149
ˆD . 19
ˆZ . 149

___cleanup . 140
___setup . 140

Chapter 18: General index 155

˜
˜ / . 86
˜˜ / . 86
˜ username/ . 86

A
abandoned-mutex-exception? 71
abort . 68
absolute path . 86, 87
all-bits-set? . 40
any-bits-set? . 40
arithmetic-shift . 38

B
bit-count . 39
bit-set? . 40
bitwise-and . 38
bitwise-ior . 38
bitwise-merge . 38
bitwise-not . 39
bitwise-xor . 39
block . 32
break . 25

C
c-declare . 137
c-define . 139
c-define-type . 140
c-initialize . 138
c-lambda . 138
call-with-input-file 108
call-with-input-string 116
call-with-input-u8vector 116
call-with-input-vector 113
call-with-output-file 108
call-with-output-string 116
call-with-output-u8vector 116
call-with-output-vector 113
cfun-conversion-exception-

arguments . 74
cfun-conversion-exception-code . . . 74
cfun-conversion-exception-message

. 74
cfun-conversion-exception-

procedure . 74
cfun-conversion-exception? 74
char->integer . 35
char-ci<=? . 35
char-ci<? . 35
char-ci=? . 35
char-ci>=? . 35
char-ci>? . 35
char<=? . 35
char<? . 35
char=? . 35

char>=? . 35
char>? . 35
clear-bit-field . 41
close-input-port . 101
close-output-port . 101
close-port . 101
command-line . 5, 89
compile-file . 14
compile-file-to-c . 14
compiler . 7
compiler options . 7
condition-variable-broadcast! 64
condition-variable-name 63
condition-variable-signal! 63
condition-variable-specific 63
condition-variable-specific-set!

. 63
condition-variable? 62
console-port . 117
constant-fold . 33
continuations . 147
copy-bit-field . 41
copy-file . 117
cpu-time . 90
create-directory . 117
create-fifo . 117
create-link . 117
create-symbolic-link 117
current exception-handler . 66
current working directory . 86
current-directory . 86
current-error-port 116
current-exception-handler 66, 117
current-input-port 116
current-output-port 116
current-readtable . 116
current-thread . 54
current-time . 64, 90
current-user-interrupt-handler . . 117

D
datum-parsing-exception-kind 77
datum-parsing-exception-parameters

. 77
datum-parsing-exception? 77
deadlock-exception? 71
declare . 32
default-random-source 41
define . 30, 149
define-macro . 32
define-structure . 48
delete-directory . 117
delete-file . 117
directory-files . 117
display-environment-set! 26
divide-by-zero-exception-arguments

. 81

Chapter 18: General index 156

divide-by-zero-exception-procedure
. 81

divide-by-zero-exception? 81

E
Emacs . 28
error-exception-message 85
error-exception-parameters 85
error-exception? . 85
exit . 89
expression-parsing-exception-kind

. 78
expression-parsing-exception-

parameters . 78
expression-parsing-exception? 78
extended-bindings . 33
extract-bit-field . 41

F
f32vector . 46
f32vector->list . 46
f32vector-append . 46
f32vector-copy . 46
f32vector-fill! . 46
f32vector-length . 46
f32vector-ref . 46
f32vector-set! . 46
f32vector? . 46
f64vector . 46
f64vector->list . 46
f64vector-append . 46
f64vector-copy . 46
f64vector-fill! . 46
f64vector-length . 46
f64vector-ref . 46
f64vector-set! . 46
f64vector? . 46
FFI . 130
file names . 86
file-attributes . 94
file-creation-time 94
file-device . 94
file-exists? . 91
file-group . 94
file-info . 91
file-info-attributes 93
file-info-creation-time 94
file-info-device . 92
file-info-group . 93
file-info-inode . 92
file-info-last-access-time 93
file-info-last-change-time 93
file-info-last-modification-time

. 93
file-info-mode . 92
file-info-number-of-links 93

file-info-owner . 93

file-info-size . 93

file-info-type . 92

file-info? . 92

file-inode . 94

file-last-access-time 94

file-last-change-time 94

file-last-modification-time 94

file-mode . 94

file-number-of-links 94

file-owner . 94

file-size . 94

file-type . 94

file .c . 7

file .scm . 7

file .six . 7

first-set-bit . 40

fixnum . 33

floating point overflow . 149

flonum . 33

force-output . 101

foreign function interface . 130

G
GAMBCOPT, environment variable 18

Gambit . 1

Gambit installation directory 86

Gambit-C . 1

gambit.el . 28

generic . 33

get-output-string . 116

get-output-u8vector 116

get-output-vector . 115

getenv . 89

group-info . 94

group-info-gid . 95

group-info-members 95

group-info-name . 95

group-info? . 94

gsc . 1, 7, 14, 15, 17

gsi . 1, 2, 17

gsi-script . 5

H
heap-overflow-exception? 68

home directory . 86

homogeneous vectors . 44, 124

host-info . 96

host-info-addresses 97

host-info-aliases . 97

host-info-name . 97

host-info? . 97

Chapter 18: General index 157

I
ieee-scheme . 32
improper-length-list-exception-

arg-num . 82
improper-length-list-exception-

arguments . 82
improper-length-list-exception-

procedure . 82
improper-length-list-exception? . . 82
include . 32
inline . 32
inlining-limit . 33
input-port-column . 103
input-port-line . 103
input-port-timeout-set! 101
input-port? . 99
integer->char . 35
integer-length . 39
integer-nth-root . 37
integer-sqrt . 37
interpreter . 2, 7
interrupts-enabled 33

J
join-timeout-exception-arguments

. 72
join-timeout-exception-procedure

. 72
join-timeout-exception? 72

K
keyword-expected-exception-

arguments . 84
keyword-expected-exception-

procedure . 84
keyword-expected-exception? 84

L
lambda . 30
lambda-lift . 33
last _.c . 9
limitations . 149
link-flat . 15
link-incremental . 14
list->f32vector . 46
list->f64vector . 46
list->s16vector . 45
list->s32vector . 45
list->s64vector . 46
list->s8vector . 44
list->u16vector . 45
list->u32vector . 45
list->u64vector . 46
list->u8vector . 44

load . 14

M
make-condition-variable 63

make-f32vector . 46

make-f64vector . 46

make-mutex . 59

make-random-source 42

make-s16vector . 44

make-s32vector . 45

make-s64vector . 45

make-s8vector . 44

make-thread . 54

make-u16vector . 45

make-u32vector . 45

make-u64vector . 46

make-u8vector . 44

multiple-c-return-exception? 76

mutex-lock! . 60

mutex-name . 59

mutex-specific . 59

mutex-specific-set! 59

mutex-state . 60

mutex-unlock! . 61

mutex? . 59

N
newline . 100

no-such-file-or-directory-
exception-arguments 69

no-such-file-or-directory-
exception-procedure 69

no-such-file-or-directory-
exception? . 69

noncontinuable-exception-reason . . 68

noncontinuable-exception? 68

nonprocedure-operator-exception-
arguments . 83

nonprocedure-operator-exception-
operator . 83

nonprocedure-operator-exception?
. 83

normalized path . 87

number-of-arguments-limit-
exception-arguments 83

number-of-arguments-limit-
exception-procedure 83

number-of-arguments-limit-
exception? . 83

Chapter 18: General index 158

O
object file . 14

object->serial-number 26

object->string . 116

open-directory . 112

open-file . 108

open-input-file . 108

open-input-string . 115

open-input-u8vector 116

open-input-vector . 113

open-output-file . 108

open-output-string 116

open-output-u8vector 116

open-output-vector 113

open-process . 109

open-string . 115

open-string-pipe . 116

open-tcp-client . 110

open-tcp-server . 111

open-u8vector . 116

open-u8vector-pipe 116

open-vector . 113

open-vector-pipe . 114

options, compiler . 7

options, runtime . 17

os-exception-arguments 69

os-exception-code . 69

os-exception-message 69

os-exception-procedure 69

os-exception? . 69

output-port-column 103

output-port-line . 103

output-port-timeout-set! 101

output-port-width . 103

output-port? . 99

overflow, floating point . 149

P
path-directory . 88

path-expand . 87

path-extension . 88

path-normalize . 87

path-strip-directory 88

path-strip-extension 88

path-strip-volume . 88

path-volume . 88

peek-char . 103

port? . 99

pp . 27

pretty-print . 27

process-times . 90

proper-tail-calls-set! 26

R
r4rs-scheme . 32
raise . 67
random-integer . 41
random-real . 42
random-source-make-integers 43
random-source-make-reals 43
random-source-pseudo-randomize! . . 42
random-source-randomize! 42
random-source-state-ref 42
random-source-state-set! 42
random-source? . 42
range-exception-arg-num 81
range-exception-arguments 81
range-exception-procedure 81
range-exception? . 81
read . 100
read-all . 100
read-byte . 107
read-char . 103
read-line . 104
read-substring . 104
read-subu8vector . 107
readtable-case-conversion? 118
readtable-case-conversion?-set . . 118
readtable-eval-allowed? 121
readtable-eval-allowed?-set 121
readtable-keywords-allowed? 119
readtable-keywords-allowed?-set

. 119
readtable-max-write-length 122
readtable-max-write-length-set . . 122
readtable-max-write-level 121
readtable-max-write-level-set . . . 121
readtable-sharing-allowed? 120
readtable-sharing-allowed?-set . . 120
readtable-start-syntax 122
readtable-start-syntax-set 122
readtable? . 118
real-time . 90
relative path . 86, 87
rename-file . 117
repl-input-port . 117
repl-output-port . 117
replace-bit-field . 41
runtime options . 17

S
s16vector . 44
s16vector->list . 45
s16vector-append . 45
s16vector-copy . 45
s16vector-fill! . 45
s16vector-length . 44
s16vector-ref . 44
s16vector-set! . 44
s16vector? . 44

Chapter 18: General index 159

s32vector . 45
s32vector->list . 45
s32vector-append . 45
s32vector-copy . 45
s32vector-fill! . 45
s32vector-length . 45
s32vector-ref . 45
s32vector-set! . 45
s32vector? . 45
s64vector . 45
s64vector->list . 46
s64vector-append . 46
s64vector-copy . 46
s64vector-fill! . 46
s64vector-length . 46
s64vector-ref . 46
s64vector-set! . 46
s64vector? . 45
s8vector . 44
s8vector->list . 44
s8vector-append . 44
s8vector-copy . 44
s8vector-fill! . 44
s8vector-length . 44
s8vector-ref . 44
s8vector-set! . 44
s8vector? . 44
safe . 33
scheduler-exception-reason 71
scheduler-exception? 71
Scheme . 1
scheme-ieee-1178-1990 5
scheme-r4rs . 5
scheme-r5rs . 5
scheme-srfi-0 . 5
seconds->time . 65, 90
separate . 32
serial-number->object 26
set! . 149
setenv . 89
sfun-conversion-exception-

arguments . 75
sfun-conversion-exception-code . . . 75
sfun-conversion-exception-message

. 75
sfun-conversion-exception-

procedure . 75
sfun-conversion-exception? 75
shell-command . 89
six-script . 5
stack-overflow-exception? 68
standard-bindings . 33
started-thread-exception-arguments

. 72
started-thread-exception-procedure

. 72
started-thread-exception? 72
step . 24

step-level-set! . 24
string-ci<=? . 36
string-ci<? . 35
string-ci=? . 35
string-ci>=? . 36
string-ci>? . 36
string<=? . 35
string<? . 35
string=? . 35
string>=? . 35
string>? . 35
subf32vector . 46
subf64vector . 46
subs16vector . 45
subs32vector . 45
subs64vector . 46
subs8vector . 44
subu16vector . 45
subu32vector . 45
subu64vector . 46
subu8vector . 44

T
terminated-thread-exception-

arguments . 73
terminated-thread-exception-

procedure . 73
terminated-thread-exception? 73
test-bit-field? . 41
thread-base-priority 55
thread-base-priority-set! 55
thread-join! . 58
thread-name . 54
thread-priority-boost 55
thread-priority-boost-set! 55
thread-quantum . 55
thread-quantum-set! 55
thread-sleep! . 56
thread-specific . 55
thread-specific-set! 55
thread-start! . 56
thread-terminate! . 56
thread-yield! . 56
thread? . 54
threads . 49
time->seconds . 65, 90
time? . 65
trace . 23
transcript-off . 30
transcript-on . 30
tty-history . 117
tty-history-set! . 117
tty-max-history-length-set! 117
tty-mode-set! . 117
tty-paren-balance-duration-set!

. 117
tty-text-attributes-set! 117

Chapter 18: General index 160

tty-type-set! . 117
tty? . 117
type-exception-arg-num 80
type-exception-arguments 80
type-exception-procedure 80
type-exception-type-id 80
type-exception? . 80

U
u16vector . 45
u16vector->list . 45
u16vector-append . 45
u16vector-copy . 45
u16vector-fill! . 45
u16vector-length . 45
u16vector-ref . 45
u16vector-set! . 45
u16vector? . 45
u32vector . 45
u32vector->list . 45
u32vector-append . 45
u32vector-copy . 45
u32vector-fill! . 45
u32vector-length . 45
u32vector-ref . 45
u32vector-set! . 45
u32vector? . 45
u64vector . 46
u64vector->list . 46
u64vector-append . 46
u64vector-copy . 46
u64vector-fill! . 46
u64vector-length . 46
u64vector-ref . 46
u64vector-set! . 46
u64vector? . 46
u8vector . 44
u8vector->list . 44
u8vector-append . 44
u8vector-copy . 44
u8vector-fill! . 44
u8vector-length . 44
u8vector-ref . 44
u8vector-set! . 44
u8vector? . 44
unbound-global-exception-variable

. 79
unbound-global-exception? 79

unbound-os-environment-variable-
exception-arguments 70

unbound-os-environment-variable-
exception-procedure 70

unbound-os-environment-variable-
exception? . 70

unbreak . 25
uncaught-exception-arguments 73
uncaught-exception-procedure 73
uncaught-exception-reason 73
uncaught-exception? 73
unknown-keyword-argument-

exception-arguments 84
unknown-keyword-argument-

exception-procedure 84
unknown-keyword-argument-

exception? . 84
untrace . 23
user-info . 95
user-info-gid . 96
user-info-home . 96
user-info-name . 96
user-info-shell . 96
user-info-uid . 96
user-info? . 96

W
with-exception-catcher 67
with-exception-handler 66
with-input-from-file 108
with-input-from-string 116
with-input-from-u8vector 116
with-input-from-vector 113
with-output-to-file 108
with-output-to-string 116
with-output-to-u8vector 116
with-output-to-vector 113
write . 100
write-byte . 107
write-char . 104
write-substring . 104
write-subu8vector . 107
wrong-number-of-arguments-

exception-arguments 82
wrong-number-of-arguments-

exception-procedure 82
wrong-number-of-arguments-

exception? . 82

i

Table of Contents

1 The Gambit-C system . 1
1.1 Accessing the system files . 1

2 The Gambit Scheme interpreter 2
2.1 Interactive mode . 2
2.2 Batch mode . 3
2.3 Customization . 3
2.4 Process exit status . 4
2.5 Scheme scripts . 4

2.5.1 Scripts under UNIX and Mac OS X . 5
2.5.2 Scripts under Microsoft Windows . 6

3 The Gambit Scheme compiler 7
3.1 Interactive mode . 7
3.2 Customization . 7
3.3 Batch mode . 7
3.4 Link files . 10

3.4.1 Building an executable program . 10
3.4.2 Building a loadable library . 11
3.4.3 Building a shared-library . 13
3.4.4 Other compilation options . 13

3.5 Procedures specific to compiler . 14

4 Runtime options for all programs 17

5 Debugging . 19
5.1 Debugging model . 19
5.2 Debugging commands . 20
5.3 Procedures related to debugging . 23
5.4 Console line-editing . 27
5.5 Emacs interface . 28
5.6 IDE . 29

6 Scheme extensions . 30
6.1 Extensions to standard procedures . 30
6.2 Extensions to standard special forms . 30
6.3 Miscellaneous extensions . 31

7 Characters and strings . 35
7.1 Extensions to character procedures . 35
7.2 Extensions to string procedures . 35

ii

8 Numbers . 37
8.1 Extensions to numeric procedures . 37
8.2 IEEE floating point arithmetic . 37
8.3 Integer square root and nth root . 37
8.4 Bitwise-operations on exact integers . 38
8.5 Pseudo random numbers . 41

9 Homogeneous vectors . 44

10 Records . 48

11 Threads . 49
11.1 Introduction . 49
11.2 Threads . 49
11.3 Mutexes . 50
11.4 Condition variables . 50
11.5 Fairness . 50
11.6 Memory coherency and lack of atomicity************* 51
11.7 Dynamic environments, continuations and ‘dynamic-wind ’ . . 52
11.8 Time objects and timeouts . 53
11.9 Primitives and exceptions . 53
11.10 Primordial thread . 53
11.11 Procedures . 54

12 Exceptions . 66
12.1 Exception-handling . 66
12.2 Exception objects related to memory management 68
12.3 Exception objects related to the host environment 69
12.4 Exception objects related to threads . 71
12.5 Exception objects related to C-interface . 74
12.6 Exception objects related to the reader . 77
12.7 Exception objects related to evaluation and compilation 78
12.8 Exception objects related to type checking 80
12.9 Exception objects related to procedure call 82
12.10 Other exception objects . 85

13 Host environment . 86
13.1 Handling of file names . 86
13.2 Shell command execution . 88
13.3 Process termination . 89
13.4 Command line arguments . 89
13.5 Environment variables . 89
13.6 Measuring time . 90
13.7 File information . 91
13.8 Group information . 94
13.9 User information . 95
13.10 Host information . 96

iii

14 I/O and ports . 98
14.1 Unidirectional and bidirectional ports . 98
14.2 Port classes . 98
14.3 Port settings . 99
14.4 Object-ports . 99

14.4.1 Object-port settings . 99
14.4.2 Object-port operations . 99

14.5 Character-ports . 102
14.5.1 Character-port settings . 102
14.5.2 Character-port operations . 103

14.6 Byte-ports . 105
14.6.1 Byte-port settings . 105
14.6.2 Byte-port operations . 107

14.7 Device-ports . 108
14.7.1 Filesystem devices . 108
14.7.2 Process devices . 109
14.7.3 Network devices . 110

14.8 Directory-ports . 112
14.9 Vector-ports . 113
14.10 String-ports . 115
14.11 U8vector-ports . 116
14.12 Parameter objects related to I/O . 116
14.13 Directories . 117
14.14 Tty-ports . 117

15 Lexical syntax and readtables 118
15.1 Readtables . 118
15.2 Boolean syntax . 123
15.3 Character syntax . 123
15.4 String syntax . 123
15.5 Symbol syntax . 124
15.6 Keyword syntax . 124
15.7 Number syntax . 124
15.8 Homogeneous vector syntax . 124
15.9 Special “#!” syntax . 125
15.10 Multiline comment syntax . 125
15.11 Scheme infix syntax extension . 125

16 C-interface . 130
16.1 The mapping of types between C and Scheme 130
16.2 The c-declare special form . 137
16.3 The c-initialize special form . 138
16.4 The c-lambda special form . 138
16.5 The c-define special form . 139
16.6 The c-define-type special form . 140
16.7 Continuations and the C-interface . 147

iv

17 System limitations . 149

18 Copyright and license 150

General index . 154

	The Gambit-C system
	Accessing the system files

	The Gambit Scheme interpreter
	Interactive mode
	Batch mode
	Customization
	Process exit status
	Scheme scripts
	Scripts under UNIX and Mac OS X
	Scripts under Microsoft Windows

	The Gambit Scheme compiler
	Interactive mode
	Customization
	Batch mode
	Link files
	Building an executable program
	Building a loadable library
	Building a shared-library
	Other compilation options

	Procedures specific to compiler

	Runtime options for all programs
	Debugging
	Debugging model
	Debugging commands
	Procedures related to debugging
	Console line-editing
	Emacs interface
	IDE

	Scheme extensions
	Extensions to standard procedures
	Extensions to standard special forms
	Miscellaneous extensions

	Characters and strings
	Extensions to character procedures
	Extensions to string procedures

	Numbers
	Extensions to numeric procedures
	IEEE floating point arithmetic
	Integer square root and nth root
	Bitwise-operations on exact integers
	Pseudo random numbers

	Homogeneous vectors
	Records
	Threads
	Introduction
	Threads
	Mutexes
	Condition variables
	Fairness
	Memory coherency and lack of atomicity*************
	Dynamic environments, continuations and dynamic-wind
	Time objects and timeouts
	Primitives and exceptions
	Primordial thread
	Procedures

	Exceptions
	Exception-handling
	Exception objects related to memory management
	Exception objects related to the host environment
	Exception objects related to threads
	Exception objects related to C-interface
	Exception objects related to the reader
	Exception objects related to evaluation and compilation
	Exception objects related to type checking
	Exception objects related to procedure call
	Other exception objects

	Host environment
	Handling of file names
	Shell command execution
	Process termination
	Command line arguments
	Environment variables
	Measuring time
	File information
	Group information
	User information
	Host information

	I/O and ports
	Unidirectional and bidirectional ports
	Port classes
	Port settings
	Object-ports
	Object-port settings
	Object-port operations

	Character-ports
	Character-port settings
	Character-port operations

	Byte-ports
	Byte-port settings
	Byte-port operations

	Device-ports
	Filesystem devices
	Process devices
	Network devices

	Directory-ports
	Vector-ports
	String-ports
	U8vector-ports
	Parameter objects related to I/O
	Directories
	Tty-ports

	Lexical syntax and readtables
	Readtables
	Boolean syntax
	Character syntax
	String syntax
	Symbol syntax
	Keyword syntax
	Number syntax
	Homogeneous vector syntax
	Special ``#!'' syntax
	Multiline comment syntax
	Scheme infix syntax extension

	C-interface
	The mapping of types between C and Scheme
	The c-declare special form
	The c-initialize special form
	The c-lambda special form
	The c-define special form
	The c-define-type special form
	Continuations and the C-interface

	System limitations
	Copyright and license
	General index

